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Abstract

This paper proposes and estimates a tractable, arbitrage-free valuation
model for corporate coupon bonds that includes a more realistic recovery rate
process. Most existing studies use a recovery rate process that is misspecified
because it includes recovery for coupons due after default. Misspecification
errors from assuming recovery on all coupons can be substantial; they in-
crease with recovery rates, coupons, maturity, and default probabilities. For
a large sample of market transactions: (i) our model has lower pricing errors
than one assuming recovery on all coupons, and (ii) the magnitude of our
model’s outperformance is linked to misspecification errors from assuming
recovery on coupons.

1 Introduction

Credit spreads, the difference between yields to maturity on risky debt and govern-
ment bonds, are commonly used as measures of risk and to price risky bonds. In
the corporate bond literature, for example Collin-Dufresne, Goldstein, and Mar-
tin (2001) identify drivers of variation in credit spreads while Campbell and Tak-
sler (2003) and Gilchrist-Zakrajšek (2012) explore determinants of credit spreads.
Other work, e.g. Elton, Gruber, Agrawal, and Mann (2001) and Huang and Huang
(2012), decompose a coupon bond’s credit spread into its various components: the
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expected loss, a default risk premium, an illiquidity risk premium, and an ad-
justment for the deductibility of government bond income for state taxes.1 A
second stream of the literature prices bonds or related securities using a reduced
form model (see Duffee (1999), Duffie, Pedersen, and Singleton (2003), Driessen
(2005)). A careful reading of these papers shows that they all explicitly or implic-
itly assume that a single credit spread or spread term structure can be used to
value risky debt.

The underlying assumption is that a coupon bond is equivalent to a portfolio of
risky zero-coupon bonds that can be valued using a single spread or spread term
structure. The number of zero-coupon bonds held in the portfolio corresponds
to the promised coupons and principal with their maturities corresponding to
the payment dates (see expression (3) in the text). Importantly, both promised
coupons and principal payments are discounted using the same spread. For the
credit spread estimation literature, this implicit assumption follows because all
promised coupons and principal are included when computing a bond’s credit
spread. In the reduced form model literature, the recovery rate process utilized
is the “recovery of market value (RMV)” due to Lando (1998) and Duffie and
Singleton (1999), which implies this result. This pricing approach assumes that,
when discounting, coupon and principal cash flows are treated the same, and,
therefore, that both promised payments entitle the holder to a recovery in default.
For subsequent discussion, we call this the “full-coupon recovery” model.

As shown by Jarrow (2004), a single term structure of risky zero-coupon bonds
used for valuing coupon bonds is valid if and only if all of the risky zero-coupon
bonds are of equal seniority and all have the same recovery rate in the event of
default. However, this assumption is inconsistent with industry practice. After
default, as evidenced by financial restructurings and default proceedings, only the
bond’s principal becomes due, and no additional coupon payments are made on or
after the default date. This implies that coupon and principal payments cannot
be valued using the same (single) credit spread or spread term structure and that
basing a bond valuation model on this erroneous assumption of equal seniority
will generate model prices with misspecification errors.

Industry practice has been confirmed in the recovery rate estimation litera-
ture where it has been shown that alternative recovery rate processes,2 either the
“recovery of face value (RFV)” or the “recovery of Treasuries (RTV)” formula-
tions, provide a better approximation to realized recovery rates than does RMV
(see Guha and Sbuelz (2005), Guo, Jarrow and Lin (2008), Bakshi, Gao, and
Zhong (2022)).3 And, it is well known that both the RFV and RTV recovery rate

1Other work explores determinants of risky debt yield spreads in the sovereign context, e.g.
Duffie, Pedersen and Singleton (2003) or Hilscher and Nosbusch (2010).

2See Bielecki and Rutkowski (2002), Chapter 8 for a discussion of these different recovery rate
processes.

3See also Guha, Sbuelz and Tarelli (2020), who provide evidence in support of RFV when

2



processes are consistent with a zero recovery on coupons promised after default.
Therefore, these recovery rate processes do not imply the full-coupon recovery
model. See Jarrow and Turnbull (2000), Longstaff, Mithal, and Neis (2005), Bi-
elecki and Rutkowski (2002), chapter 13, Collin-Dufresne and Goldstein (2001),
and Huang and Huang (2012) for models with zero recovery on coupons promised
after default.4

The purpose of this paper is to explore, both theoretically and empirically, the
effect on bond prices of assuming zero recovery on coupons promised after default.
We refer to such a model as a “no-coupon recovery” model to differentiate it from
the “full-coupon recovery” model. We derive an intuitive and straightforward-to-
implement no-coupon recovery pricing model depending only on the risk-free term
structure, default probabilities, the recovery rate, and an illiquidity parameter. We
also present a clear and easy-to-calculate measure, the misspecification error, that
identifies the effect of using a misspecified full-coupon recovery rate assumption
on bond prices. These misspecification errors are due to the full-coupon recovery
model’s erroneous assumption of positive recovery for coupons after default.

We show theoretically that these misspecification errors are larger if recovery
rates, default probabilities, maturity, or coupon payments are larger. For example,
given a 10-year bond with a recovery rate of 50%, a coupon of 2.51%, and an
annual default probability of 1%, the full-coupon recovery model will assign a
price that is $0.50 too large. If it is a 30-year bond, the price error is $4.33, a
substantial difference relative to the correct price, which is equal to par in both
cases. We calculate exact misspecification errors and also provide an approximate
formula that can be used to estimate the misspecification error’s magnitudes.
In this approximation, misspecification errors are proportional to the recovery
rate, the coupon size, the default probability, and the square of the number of
coupon payments - which is closely related to maturity. Finally, we provide a
comprehensive analysis of the empirical implications of the different pricing models
for a large data set of coupon bond transaction prices.

Before this analysis, we present some direct evidence of the different payment
seniority between principal and coupons. Here, we provide three examples of
issuers that have filed for bankruptcy: Lehman Brothers, Pacific Gas and Electric
(PG&E), and Weatherford International. We use both the full-coupon recovery

studying high-yield bond duration.
4Huang and Huang (2012) propose a model with no recovery on coupons and a constant

recovery rate. Bakshi, Madan and Zhang (2006) use the Lehman Bond price data set to compare
different recovery assumptions for a sample of 25 BBB-rated bonds over a nine-year period. They
find that pricing errors decline when choosing the RTV or RFV rather than RMV specification.
Our paper uses a much larger data set, demonstrates the effect on pricing of using different
spreads for principal and coupons, explores the drivers of model misspecification errors on pricing
both theoretically and empirically, and estimates the effect of illiquidity on prices. We also
provide direct evidence of prices reflecting no recovery on coupons by looking at prices of bonds
immediately after default.
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and no-coupon recovery models to price the bonds. We find that pricing errors
from using the misspecified full-coupon recovery model are between five to ten
times larger than the no-coupon recovery model’s pricing errors. This evidence
is consistent with market prices reflecting zero recovery on coupons paid after
default.

Our main empirical investigation performs a comparative analysis of the no-
coupon and the full-coupon recovery models using a sample consisting of daily
market prices for a collection of liquidly traded bonds over the time period Septem-
ber 2017 - August 2022. This data sample contains close to 168 thousand bond
price observations. We separately fit both models. If market prices reflect zero
recovery for coupons promised after default, the no-coupon recovery model will
outperform the full-coupon recovery model. To test this hypothesis, we compute
the average outperformance. However, this comparison is less informative if done
in isolation. The reason for this is that our model predicts that the outperfor-
mance’s magnitude is directly related to the size of the misspecification error –
the pricing error from assuming recovery for coupons promised after default. And,
a small average outperformance may simply result from a sample in which these
misspecification errors are small.

Instead, a more relevant test is whether the misspecification error can explain
the variation in the magnitude of the no-coupon recovery model’s outperformance.
For example, if a bond has short maturity with only a few coupons and a small
default probability, the two models will predict nearly the same price (the misspec-
ification error is close to zero) and the no-coupon recovery model will outperform
only slightly. But, if the maturity is long and the default probability is substantial
(and zero recovery of coupons promised after default is reflected in the data) the
no-coupon recovery model’s outperformance will be large.

Given these insights, our empirical investigation proceeds in two steps. First,
we calculate the misspecification errors from assuming recovery for coupon pay-
ments after default. Second, we study the performance of both the no-coupon
and full-coupon recovery models separately, and analyze whether any outperfor-
mance of the no-coupon recovery model depends on the misspecification errors.
In this empirical investigation, we fit both models to data obtaining prices, and
then compare pricing errors between the two models.

Proceeding in this manner, the evidence from the first step shows that the
misspecification errors are often quite large (in our data, the 95th percentiles are
between $0.97 and $2.18 per $100 face value). However, the median misspecifi-
cation error is small and between 5 - 13 cents. Thus, although the no-coupon
recovery model outperforms the full-coupon recovery model, for some bonds the
difference is highly relevant, while for other bonds it is not.

The second step amounts to a horse race between the models, but one that not
only tests average outperformance but also tests whether our model’s predictions
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regarding relative outperformance is consistent with the data. Briefly, here we find
evidence of the no-coupon recovery model’s outperformance in the full sample.
More importantly, we show that the no-coupon model’s outperformance is larger
when the default probability, the recovery rate, the maturity, and the coupons are
larger. In other words, our approach accurately forecasts when zero recovery of
coupons promised after default is important for pricing.

We find that the no-coupon recovery model outperformance is robust to differ-
ent model implementation choices. We estimate two versions of the two models.
Model 1 assumes a fixed recovery rate and no illiquidity effect. The single free
parameter is the default probability, which we estimate implicitly. This model has
the benefit of being stable and not requiring any additional data apart from bond
prices, characteristics, and Treasury rates. In Model 2 we also implicitly estimate
the recovery rate.

Each issuer-day we price a collection of bonds using both models. This allows
the full-coupon recovery model to adjust its parameters. Therefore, what matters
when comparing model fit is not the average level of the misspecification error.
Indeed, if it were the same, biased inputs could result in a low pricing error.
Instead, the within issuer-day misspecification error’s standard deviation is what
is relevant. When it is large, the misspecified model will have difficulty adjusting
and is more likely to underperform. We find exactly this pattern in the data.

Regressing the difference in the full-coupon and the no-coupon recovery models’
mean pricing errors (i.e. model outperformance) on the misspecification error’s
standard deviation, the coefficient is highly significant with an R2 of 58% for Model
1. When focusing attention on the top quartile of misspecification error standard
deviation observations, the pricing error difference increases from 7.2 to 22.4 cents.
For the top decile, outperformance increases to 37 cents. Model 1’s outperformance
happens as the model predicts, providing evidence that market participants are
pricing bonds with the no-coupon rather than the full-coupon recovery model.
Models 2 also reflects the close relationship between misspecification error standard
deviation and model outperformance; the regression R2 is 38% and pricing error
differences increase from 3.2 cents to 10 cents (top quartile) and 16 cents (top
decile).5

One implication of our results is that default probability and recovery rate
have distinct effects on the bond’s price. As a result, it is now possible to back out
implied recovery rates from observed bond prices, something that is not possible
in the full -coupon recovery model.6 In terms of spreads, recovery rate and de-

5The lower levels of outperformance are the result of increased model flexibility (two instead
of one fitted model parameter), which allows the full-coupon recovery model an additional degree
of freedom to adjust and try to match observed prices. We discuss potentially resulting biases
below.

6Reflecting this implication of the pricing model, we see instability in fitted recovery rates for
the full-coupon recovery model.
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fault probability have different impacts on principal and coupon-specific spreads
(coupon spreads are unaffected by changes in the recovery rate because they have
zero recovery). We exploit this pattern in the third version, Model 3, where we
use an external estimate of the default probability and a parameter for illiquidity.

In model 3 we estimate both implied recovery rates and illiquidity discounts.
We show that the variation in both of these parameters exhibit what we expect.
Average recovery rates, though a little higher, are generally in line and consistent
with the previous literature. Variation in the illiquidity parameter has a strikingly
close relationship to the Aaa-Treasury spread, although outside of the crisis periods
the illiquidity discount is slightly smaller in magnitude than the Aaa-Treasury
spread and it is also smaller on average. When the Covid-19 pandemic hit markets
in March of 2020, both the Aaa-Treasury and our illiquidity parameter spiked (also
see Kargar et al. (2021)). The close relationship between our illiquidity parameter
and the Aaa-Treasury spread, neither of which uses the same data nor methodology
to compute, provides independent validation for our pricing model. We also find
that the no-coupon recovery model outperforms the full-coupon model and that
the outperformance increases when the misspecification error’s standard deviation
is larger.

The outline of the paper is as follows. Section 2 presents the model for valuing
risky coupon bonds. Section 3 quantifies how bond-specific characteristics affect
full-coupon model misspecification errors. Section 4 discusses the data and model
estimation procedures, while Section 5 presents some illustrative pricing results
for three companies that filed for bankruptcy. Section 6 presents a comparative
analysis of the two alternative pricing models, discusses variation in model fit and
parameters over time, and shows robustness of the results. Section 7 concludes.

2 The Pricing Model

This section presents the pricing model, which is based on the reduced form model
of Jarrow and Turnbull (1995). We assume that traded in the economy are default-
free zero-coupon bonds of all maturities, a default-free money market account,
and a risky coupon bond (to be described later). The market is assumed to
be frictionless and competitive. Both the frictionless and competitive market
assumptions are relaxed, subsequently, when we add an illiquidity discount to the
valuation formula (see expression (4) below).

The default-free money market account earns interest continuously at the
default-free spot rate of interest, rt. The money market account’s time t value
is denoted by

Bt = e
∫ t
0 rsds (1)

with B0 = 1. We let the time t value of a default-free zero-coupon bond paying a
dollar at time T be strictly positive and denoted by p(t, T ) > 0.
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We consider a firm that issues a bond with a coupon of C dollars, a face value
equal to L dollars, and a maturity date T . The bond pays the C dollar coupons
at intermediate dates {t1, ..., tm = T}, but only up to the default time τ . For
notational convenience, let the current time t = t0. If default happens in the time
interval (tk−1, tk], then the bond pays a stochastic recovery rate of δtk ∈ [0, 1] at
time tk on the notional of L dollars.7 It is important to note that default can
happen anytime within this interval, but the payment only occurs at the end. If
default does not happen, the face value of L dollars is repaid at time T .

2.1 Risk Neutral Valuation

To value the risky coupon bond, we assume (i) that the markets for both the
default-free coupon bonds and the risky coupon bond are arbitrage-free and (ii)
that enough credit derivatives trade on the risky firm so that the enlarged market
is complete (see Jacod and Protter (2010) for a set of sufficient conditions on an
incomplete market such that the expanded market is complete). Given the trading
of credit default swaps, this is a reasonable approximation.

With only a minor loss of generality, we introduce a novel conditional indepen-
dence assumption to facilitate analytic tractability. The conditional independence
assumption (see the appendix for the formal definition) is that the default-free
spot rate rt, the default time τ , and the recovery rate process δt are independent
under the risk neutral probability Q given the information at time t that does not
depend on the histories of these three processes. This is a weak assumption on
the evolutions of the default-free spot rate, the default time, and the recovery rate
because it imposes very little structure on their evolutions under the statistical
probabilities. Under the statistical probabilities, these processes need not be inde-
pendent. Hence, nonzero pairwise correlations under the statistical probabilities
between the observed default-free spot rate, the default time, and the recovery
rate processes, are not excluded by this assumption. And, it is well known that
non-zero correlations across the default-free spot rate, default times, and recovery
rates have been observed in historical data.

Denote the time t ≤ t1 value of the coupon bond as vt. Under the conditional
independent assumption, we show in the appendix that the coupon bond’s price
is

vt =
∑m

k=1
Cz(t, tk) + Lz(t, T ) + Ldt

∑m

k=1
x(t, tk) (2)

where
dt := EQ [δτ |Ft ]

7In practice, a portion of the next coupon payment after default represents some accrued
interest earned, but not yet paid. This accrued interest has a recovery rate associated with it.
With a slight loss of generality we exclude this accrued interest payment in the stochastic recovery
rate δtk defined above. We appreciate the comments from a law firm, Morrison & Foerster, in
this regard.
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z(t, tk) := p(t, tk)[1−Q(t, tk)]

x(t, tk) := p(t, tk)[Q(t, tk+1)−Q(t, tk)]

Q(t, ti) := ProbQ [τ ≤ ti |Ft ] .

In this expression:
(i) Q(t, ti) is the time t conditional risk neutral probability of default before

ti,
(ii) dt is the time t futures recovery rate (for a futures contract receiving the

recovery rate at time T ∗, see the appendix for the details). As a futures price, the
recovery rate in our valuation formula is a Q - martingale. This is an important
implication of the conditional independence assumption underlying expression (2).
Because it is a futures price, it is expected to be slightly larger than the recovery
rate if paid on the debt at time t, δt (see the appendix for a proof).

(iii) z(t, tk) is a survival digital, which pays $1 at time tk only if default occurs
after tk, 0 otherwise.

(iv) x(t, tk) is a default digital, which pays $1 at time tk if default occurs within
(tk−1, tk], 0 otherwise.

We refer to this expression as the “no-coupon recovery” model to emphasize
that it has no recovery on the promised coupons after default. In this form it is easy
to see that the value of this coupon bond is not equal to the sum of the coupons
and principal times the value of a collection of risky zero-coupon bonds. Indeed,
let D(t, tk) denote the time t value of such a risky zero-coupon bond promising to
pay a dollar at time tk for k = 1, . . . ,m with recovery rate δt in default. Then, it
can be shown that

vfull coupont =
∑m

k=1CD(t, tk) + LD(t, T )
=

∑m
k=1Cz(t, tk) + Lz(t, T ) + Ldt

∑m
k=1 x(t, tk)

+
∑m

k=1C(m+ 1− k)x(t, tk).
(3)

This expression is called the “full-coupon recovery model.” The difference between
this model and expression (2) is the term

∑m
k=1C(m + 1 − k)dtx(t, tk),8 which

represents the present value of the recovery on the coupons promised after default.

2.2 An Illiquidity Discount

Corporate bond markets are illiquid relative to Treasury bonds or exchange traded
equities. This illiquidity implies that corporate bond prices may reflect an illiquid-
ity discount (see Jarrow and Turnbull (1997), Duffie and Singleton (1999), Cherian,

8This term follows because if default occurs during the time interval (tk−1, tk], the remaining
future coupons are

∑m
j=k C = (m + 1 − k)C. In the full coupon recovery model, one gets a

recovery payment on all the remaining coupons.
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Jacquier, and Jarrow (2004)). An illiquidity discount modifies the previous valu-
ation formula to implicitly incorporate the impact on pricing due to transaction
costs and trading constraints.

It is important to note that transactions costs (including bid/ask spreads)
are a special case of an illiquidity cost paid when trading, which are implicitly
included via an illiquidity discount (see Cetin, Jarrow and Protter (2004) for the
theoretical justification of this statement). Similarly, taxes paid on coupons and
capital gains can also be interpreted as a type of transaction cost, and hence they
too are implicitly included in the illiquidity discount as well.9

We apply the illiquidity discount function eαt(T−t) symmetrically to all the
cash flows promised to the coupon bond. This symmetry enables similar illiquidity
discount impacts across different coupon bonds issued by the same credit entity.
Given this, we can rewrite the coupon bond’s value as

vliqt =
∑m

k=1
Cz(t, tk)e

αt(tk−t)+Lz(t, T )eαt(T−t)+Ldt
∑m

k=1
x(t, tk)e

αt(tk−t). (4)

As we discuss below, we fit different versions of this model to the data. When
the recovery rate and illiquidity discount are included in the estimation, both
the recovery rate dt and the illiquidity parameter αt are stochastic, hence, they
can vary randomly across time due to changing market conditions. Our estimation
procedure allows for these estimated parameter values to reflect this randomness.10

Expression (4) is the valuation model estimated in the empirical analysis.

3 Misspecification Errors

This section builds intuition for misspecification errors when using the full-coupon
recovery model, expression (3) instead of the no-coupon recovery model, expression
(2). Recall that the misspecification error, the difference between the full-coupon
and no-coupon recovery model prices, is equal to

∑m
k=1C(m + 1 − k)dtx(t, tk).

Note that these misspecification errors are always positive.
We next quantify the magnitudes of these misspecification errors and provide

a simple approximation that allows us to relate the misspecification errors to the
9The complication of explicitly including illiquidity costs (transaction, taxes) into the model

is that different traders face different taxes and transaction costs based on their trading activities.
Consequently, to determine a market price, an equilibrium model is needed. Equilibrium models
are notoriously ladened with unrealistic assumptions. Furthermore, an argument can be made
that the marginal trader, who determines the market price, is the lowest illiquidity cost trader.
Here, we note that many institutions pay small transaction costs and there do exist non-taxable
institutions that purchase corporate debt.

10We use implicit estimation at a fixed time t allowing αt to depend on the information available
at time t.
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model’s inputs. Later, we relate the predicted misspecification errors to patterns
in the data.

3.1 Misspecification Error Determinants

For illustrative purposes we make the following simplifying assumptions: (1)
coupon bonds are priced on coupon dates, (2) the risk-free term structure of inter-
est rates and the term structure of default probabilities are flat,11 (3) the coupon
is set so that the no-coupon recovery model’s bond price is equal to par, and (4)
there is no illiquidity discount (αt = 0), though we relax this last assumption
when we consider the effect of model parameters on spreads. Combined, these
imply that the misspecification error is fully determined by the maturity, default
probability, recovery rate, and risk-free rate.

Our data, which we describe in more detail in Section 4, consists of more than
168 thousand observations from September 2017 to August 2022 for a total of 197
issuers. More than ninety percent of the data have investment grade level ratings
equal to BBB- or above;12 average maturity is equal to 3.1 years, the average
coupon equals 3.1 percent, and the average issuer day has five observations; ninety
five percent of issuer days have eleven or fewer observations. The average bond
is priced in a sample that has an average maturity range of 3.9 years, and ninety
percent of observations have maturity ranges between 0.9 and 8.6 years. Our
sample is therefore appropriate to study how default risky coupon bonds should
be priced.

Table 1 reports misspecification errors across different inputs, assuming that
the risk-free term structure is flat at 2%. The par value of the bond is set to
100 and the recovery rate is equal to 50%, a level close to the mean recovery rate
we estimate (see below). As expected, misspecification errors increase with the
bond’s maturity and the issuer’s default probability. For short maturity 2-year
bonds, the misspecification error is equal to 0.07 if the default probability is 2%,
while the misspecification error is equal to 1.39 for a 10-year bond with the same
default probability. For 30-year bonds the misspecification error can be much
larger, reaching a level of 9.62 for a 2% default probability bond, close to 10% of
that bond’s price.

3.1.1 An Approximation for the Misspecification Error

We now propose a simple approximation for the misspecification error. In the
event of default, the present value of the payoff for the first coupon is equal to

11In the empirical implementation (Model 3) we use a term structure of default probabilities,
which is not assumed to be flat.

12The sample consists primarily of investment grade bonds since many high yield bonds have
call features, all of which are excluded. An analysis of callable bonds goes beyond the scope of
this paper.
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the discounted value of the product of the coupon rate, the recovery value, and
the probability of default, i.e. Cdtp(t, t1)Q(t, t1). The approximate total error is
equal to Cdtp(t, t1)Q(t, t1)m(m+ 1)/2 (see the appendix for additional detail).

We later use the misspecification error to identify portfolios of bonds that
are likely to be mispriced by the full-coupon recovery model. We note that the
misspecification error is zero if the recovery rate, the default probability, or the
coupon payment is zero. The error grows approximately with the square of the
number of coupon payments and is exactly proportional to the product of the
coupon payment and the recovery rate. Thus, bonds with significant recovery
values, default probabilities, and with intermediate to long maturities will have
significant misspecification errors.

3.2 Pricing with Two Credit Spread Curves

If coupons have a zero recovery after default, while the principal payment has a
positive recovery, both cash flows will not have the same discount rate. Using
the same credit spread for both will result in an inability to price bonds with
different maturities and coupons. However, a priori it is not clear if the effect we
are focusing on is empirically large or small. Spreads appropriate for discounting
coupons and principal may be similar.13 Before proceeding with our full model
estimation, we examine the difference in the two pricing approaches by examining
seniority-specific spreads. If there is a misspecification error using this full-coupon
recovery model to price bonds, then the two curves will be different.

Table 2 provides some illustrative examples of credit spread curves. We use the
same methodology as in Table 1. The only difference is that here we introduce the
effect of an illiquidity discount. Panel A reports principal spreads, Panel B reports
coupon spreads. As long as there is a positive recovery, coupon spreads lie above
principal spreads since the latter will be worth more and thus are discounted less.
The difference between coupon and principal spreads is close to the product of the
default probability and the recovery rate, which follows from the misspecification
error relation given above, where, for the first coupon, the misspecification error is
equal to Cdtp(t, t1)Q(t, t1). A larger default probability makes all spreads higher.
If there is no illiquidity discount, coupon spreads are approximately equal to the
default probability, and since differences relative to principal spreads depend on
the default probability, frictionless spreads are approximately proportional to the
default probability. The effect of the illiquidity discount is seen to be symmetric,
affecting all cash flows equally. Indeed, both credit spreads increase by the amount
of the illiquidity discount.

13We note that we are interested in pricing multiple bonds simultaneously. It is, of course,
possible to calculate a bond-specific yield to maturity and therefore a bond specific credit spread.
This, however, does not provide a pricing methodology, but it is simply a transformation of the
price into another quantity.
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The results imply that principal payments are safer because they deliver poten-
tially large recovery values in the event of default. Coupon payments, in contrast,
do not pay off in default and therefore need a larger discount rate. It is useful to
note that using a single spread is not suitable to discount both cash flows with zero
or positive recovery. For the former (the coupons), the spread will be too low and
for the latter (the principal) it will be too high. Thus, using a single spread (or
spread curve) to price a new bond with a different maturity or coupon will result
in misspecification errors. In addition, using this ‘standard’ spread calculation to
assess the market’s implied risk pricing is not possible.

4 Data and Estimation

The details of the estimation procedures are as follows. To fit the valuation model
to market prices, we obtain traded coupon bond prices for the 1,248 trading days
from the beginning of September 2017 until the end of August 2022 using the
TRACE system.

The pricing model is for senior unsecured fixed-rate coupon bonds with no
embedded options. For each firm, we therefore eliminate from the sample any
subordinated bonds, callable and putable bonds, structured bonds, bonds with
“death puts” or a “survivor option,” and floating rate bonds. Survivor option bonds
distort bond prices both because they are issued in small amounts (typically $20
million or less per tranche) and because the value of the embedded put option
is significant. The survivor option feature has become more common in recent
years.14 In addition, to be included in our sample, the bond issue’s daily trade
volume had to exceed $50,000 (in almost every case, volume was much larger) and
with at least two separate bonds traded.15 We further excluded some bonds of
European issuers subject to a 2014 EU regulation allowing regulators to demand an
exchange of senior debt securities into equity. Because data assembly and cleaning

14The largest issuers of survivor option bonds as of 2016 included General Electric, Goldman
Sachs, Bank of America, Wells Fargo, Ford Motor, HSBC Holdings, National Rural Utilities
Cooperative Finance Corporation, Dow Chemical, Prospect Capital, and Barclays PLC. A typ-
ical survivor option bond’s terms are described as follows in a recent prospectus supplement
from General Electric Capital Corporation: “Specific notes may contain a provision permitting
the optional repayment of those notes prior to stated maturity, if requested by the authorized
representative of the beneficial owner of those notes, following the death of the beneficial owner
of the notes, so long as the notes were owned by the beneficial owner or his or her estate at
least six months prior to the request. This feature is referred to as a ‘Survivor’s Option.’ Your
notes will not be repaid in this manner unless the pricing supplement for your notes provides
for the Survivor’s Option. The right to exercise the Survivor’s Option is subject to limits set by
us on (1) the permitted dollar amount of total exercises by all holders of notes in any calendar
year, and (2) the permitted dollar amount of an individual exercise by a holder of a note in any
calendar year.”

15To ensure model convergence, for issuer-days with only two observations we also require that
the maturities are at least half a year apart.
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costs are substantial,16 we restrict our attention to the sample starting in 2017.
Finally, we restrict attention to bond price observations with prices above risk-free
bond prices with the same set of cash flows.17 The resulting sample consists of
more than 168 thousand observations for 197 issuers and more than 35 thousand
issuer days.

Table 3 presents summary statistics. The average coupon is equal to 3.1%,
average maturity is equal to 3.1 years,18 and the mean credit spread is 80 bps.
There is quite a bit of variation in the data – 5th to 95th percentile ranges of
coupons, maturity and spreads are 4.2, 7.9 years, and 201 bps, respectively. This
variation is important for our ability to identify differences in the no-coupon and
full-coupon recovery models. Misspecification errors are small if the coupon is
low and the maturity is short, while they are high if the maturity is long and
the coupon is large. If there is little variation in misspecification errors, the full-
coupon recovery model may produce biased estimates, but the pricing errors may
be similar to the no-coupon recovery model. However, taking a look at the issuer-
day level statistics we find a lot of variation. Average maturity range is almost four
years and the average issuer day has five bond price observations in it. There is
also variation in credit ratings. The average rating is A- and 7.6% of observations
are for non-investment grade (BB+ and below) issuers.

Table 3 Panel B reports additional firm characteristics across rating groups.
In order to fit the bond pricing model to data, we require at least two and ideally
more observations for each issuer day. This restriction naturally focuses attention
on issuers with a lot of outstanding debt, in particular financial institutions that
tend to issue a lot of bonds. We note that across the four rating groups average
book leverage declines as rating increases, no doubt because choice of leverage is
endogenous and financial institutions often have high ratings and high leverage.
The pattern in stock return volatility is as we would expect; as rating increases,
volatility increases from 24% for AA and above to 46% for non-investment grade
issuers. While there is little variation in leverage within rating group, the variation

16It is necessary to screen out callables and survivor options, data on which is only available
in the pricing supplement. The SEC and FINRA do not maintain public access to prospec-
tus data for more than about 5 years in easily accessible form. Thus including, for example,
data from the financial crisis is not feasible. In addition, the TABB group finds a very high
frequency of errors “TABB Group analysis shows reconciliation differences in more than 20%
of new issues.” (http://www.finregalert.com/an-sec-mandated-corporate-bond-data-monopoly-
will-not-help-quality/). There are also non–trivial computational costs.

17Some observations have prices above risk-free bond prices (i.e. negative implied credit
spreads), perhaps due to data errors. A negative credit spread could signal a potential ar-
bitrage opportunity. However, it may be difficult to capitalize on such mispricing because of
illiquidity. We leave further exploration of these patterns to future research.

18Model 3 (discussed below) implementation is based on default probabilities that extend to
a maturity of ten years. We therefore restrict attention to observations with that maximum
maturity.
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in volatility is much larger and increases with rating. Credit spreads exhibit a sim-
ilar pattern, ranging from 46 bps for AA and above to 210 bps for non-investment
grade.

To these data, we add U.S. Treasury yields reported daily by the U.S. Depart-
ment of the Treasury19 and derive the maximum smoothness Treasury forward
rate curves from these data (see Adams and van Deventer (1994)). Using these
historical forward rate curves, we compute the term structure of default-free zero
coupon bond prices on all dates.

The price in the TRACE system does not represent the full amount paid for
the bond. The full amount paid is the price plus accrued interest. We compare
the full amount paid (the present value of the bond purchase) with the valuation
model in expression (4). We use a non-linear least squares estimation, calculated
on a volume-weighted basis, to solve for the best fitting parameter values. We
then calculate volume-weighted mean absolute errors for the no-coupon and the
full-coupon recovery models.

4.1 Three Empirical Model Implementations

Each issuer day we fit the data to three different empirical implementations of the
model.

4.1.1 Implied Default Probabilities

Model 1 starts with a restricted version of the model, which allows us to clearly
trace the effect of estimating both the full and no-coupon recovery models on
misspecification errors, pricing errors, and parameter estimates. We first fit our
model, expression (4), assuming a flat term structure of default probabilities es-
timated implicitly. We also assume no liquidity discount,20 and a fixed recovery
rate futures price (recovery rate for short) equal to 50%, which is close to the
average recovery rate estimated in the less restrictive model implementation given
below. Importantly, this model has only one parameter, the default probability.
Model 1 allows us to see the direct impact of misspecification on estimated default
probabilities as well as model outperformance relative to the full-coupon recovery
model.

19https://www.treasury.gov/resource-center/data-chart-center/interest-
rates/Pages/TextView.aspx?data=yield

20In the model, a change in the default probability affects the present value of all cash flows,
both coupons and principal. The same is true for a change in the illiquidity parameter. From
expression (4) and the spread curve examples in Table 2 we know that the effect is not exactly the
same, and so it is possible to estimate both separately. Nevertheless, to guard against unstable
estimates or overfitting, we set the illiquidity discount equal to zero and estimate only a default
intensity. In Model 2, we also fit the recovery rate. When using historically-estimated default
probability (Model 3) we also add an illiquidity parameter (see below).
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In Model 2, we relax the restriction on recovery rates and instead allow it to
vary between 0.1 and 0.8. This model has two parameters and it is significantly
more flexible. We restrict default probabilities to be greater than 0.1% – close to
the first percentile of the distribution when using an historically estimated default
probability, discussed below. These bounds on the default probability and recovery
rates reduce excessive model flexibility, in particular for the full-coupon recovery
model, and allow us to trace the effect of misspecification errors on pricing errors
more easily. Both models 1 and 2 have the advantage that they require only bond
prices and the term structure of risk-free Treasury rates as inputs.

4.1.2 Historically Estimated Default Probabilities

Model 3, instead of estimating default probabilities implicitly using bond price
data, uses a historically estimated default probability. That is, we employ inde-
pendently estimated default probabilities from a proportional hazard rate model.
Because there is then one less parameter to fit, in this version of the model we
include an illiquidity discount parameter together with the recovery rate.

To facilitate the estimation of the default intensity process, we assume that the
default time τ corresponds to the first jump time of a Cox process with intensity
λt = λt(Γt) ≥ 0 where Γt = (Γ1(t), . . . ,Γm(t))′ ∈ Rm are a collection of stochastic
processes characterizing the state of the firm and the market at time t. In addi-
tion, we assume that default risk is diversifiable in the sense of Jarrow, Lando,
and Yu (2005).21 This assumption enables the estimation of default intensities
without the need to adjust the intensity process for a default jump risk premium.
In conjunction, these two assumptions imply that we can estimate the default
probabilities using a proportional hazard rate model (see Fleming and Harrington
(1991), p. 126), i.e.

λt(Γt) = θeϕΓt

where θ is a constant and where ϕ is a vector of constants. For an application of
such a hazard rate model applied to corporate default probabilities see Chava and
Jarrow (2004).

As discussed in Jarrow, Lando, and Yu (2005), this assumption does not imply
that risky coupon bonds earn no risk premium. Quite the contrary. If the state
variables Γt driving the default process represent systematic risk, which is the most
likely case, then risky coupon bond prices necessarily earn a risk premium due to
the bond price’s correlation to Γt. The diversifiable risk assumption just states
that the timing of the default event itself, after conditioning on Γt, is diversifiable
in a large portfolio. Alternatively stated, in a poor economy all firms are more
likely to default. But, the timing of which firms actually default depends on the
idiosyncratic risks of the firm’s management and operations.

21For additional detail, see the appendix.

15



The default process parameters (θ, ϕ) from the proportional hazard rate model
were provided by the Kamakura Risk Information Services (KRIS) division of SAS
Institute, Inc.22 KRIS uses a refinement of the approach employed by Chava and
Jarrow (2004) to estimate these parameters that are then used to construct the
full term structure of cumulative default probabilities.23 Specifically, for each
issuer-day we obtain cumulative default probabilities from the 10-year term struc-
ture of monthly marginal default probabilities (the monthly probability of default
conditional on no prior default). The state variables used in KRIS’s hazard rate
estimation include both firm specific and macroeconomic variables. Importantly,
the default probabilities do not use traded bond or CDS prices as inputs. Default
probabilities are therefore separate inputs relative to the observed bond prices that
we fit using model 3.

We restrict the recovery rate to lie between 0.1 and 0.8 and the illiquidity
discount to lie between zero and -5%. Doing so will reduce the influence of observed
bond price errors on the estimates. We report robustness checks in Section 6.7
below.

5 Illustrations: Coupon and Principal Seniority in De-
fault

Before moving to the full sample estimation, this section provides evidence that
market prices reflect the difference in seniority between principal and coupons in
default. We consider three companies that filed for bankruptcy: Lehman, PG&E,
and Weatherford International. Lehman is chosen because of the size and impor-
tance of its bankruptcy. The latter two firms are in our sample because each firm
has a sufficient number of bonds traded. In each case we focus on senior bonds,
including callable bonds, because on the day bankruptcy is announced the call
option is worthless and can be ignored. We fit the no-coupon and full-coupon
recovery models to the data.

The key reason for analyzing issuer bonds after they file for bankruptcy is
that the default probability equals 100%. The recovery amount for the no-coupon
recovery model is the recovery rate times the notional of $100 (par value) for each
of the bonds. The recovery amount for the full-coupon recovery model is $100
plus the dollar coupon times the number of remaining payments on each bond, a
different amount for each issue. For each issuer day and for both of the models,

22See www.kamakuraco.com.
23The model underlying the default probability calculations is similar to the one used in Camp-

bell, Hilscher and Szilagyi (2008, 2011), who extend Chava and Jarrow (2004) and Shumway
(2001). Campbell et al. show that the default probability measure is a more accurate predictor
of failure than Moody’s EDF numbers, data that have been widely used in academic studies, e.g.
Berndt, Douglas, Duffie and Ferguson (2018).
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we run the regression

present value = (recovery rate) (notional value)

to derive the recovery rate and the present values (price plus accrued interest) for
each bond.

Figures 1-3 depict the pricing errors. We order the bonds by maturity. Pricing
errors when using the no-coupon recovery model (in blue) are substantially lower
than those resulting from the full-coupon recovery model (in red). Mean absolute
errors are more than five times as large for Lehman (2.0 vs. 11.0) and almost ten
times as large for PG&E (2.1 vs. 19.7) and Weatherford International (2.6 vs.
21.0).

We see that the full-coupon recovery model results in prices that are too large,
especially for bonds of longer maturities that have more coupons, which if they
were of equal seniority, would entitle the bondholder to a recovery value. However,
in default those coupons are worthless and so any coupon paying bond would have
pricing errors that are positive as long as the model was using unbiased inputs.
However, in an attempt to fit the data, the model tries to reduce the average pricing
error resulting in bonds with short maturities being underpriced and bonds with
long maturities being overpriced. The maximum errors lie between 19.6 and 37.4.
It is worth noting that average market prices are equal to 32.4 (Lehman), 78.2
(PG&E), and 65.0 (Weatherford International) so that the maximum errors are
around one half the market price. The (negative) minimum errors are similar in
size lying between -37.2 and -14.2.

In contrast, the no-coupon recovery model’s maximum and minimum pricing
errors are much smaller. They lie between 3.9 and 9.1 and -5 and -2.7, and so
are approximately one quarter of the full-coupon recovery model pricing errors.
Importantly, and in direct support of the no-coupon recovery model, its pricing
errors have no clear pattern relative to the bond’s maturity.

To summarize, Lehman, PG&E and Weatherford International’s bond prices
provide direct evidence in support of the no-coupon relative to the full-coupon
recovery model. Failing to take into account the different seniority of coupons and
principal results in substantial pricing errors, which have a predictable pattern
consistent with our model.

6 The Pricing Model Comparison

This section provides a comparative analysis of the no-coupon and full-coupon
recovery models.24 The full-coupon recovery model produces different prices only
if misspecification errors (see section 3) are non-zero. We therefore investigate

24In a previous version of the paper we also compared the no-coupon recovery model to one
based on ratings. In that model coupons are assumed to have full recovery and the credit spread
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both if the no-coupon recovery model has better fit on average, and also if it
has better fit when misspecification errors are larger. Both of these predictions
are implications of our model because if bonds are priced according to the no-
coupon recovery model, then a necessary condition for model outperformance is
the presence of misspecification errors.

6.1 Misspecification Errors

Before analyzing model fit and outperformance, we first consider the distribution
of the misspecification errors. We use the unbiased estimates from the no-coupon
recovery model as inputs to compute the misspecification error as the difference
in prices between the full-coupon and the no-coupon recovery model. Recall that
the misspecification error is approximately equal to Cdtp(t, t1)Q(t, t1)m(m+1)/2.

The full-coupon recovery model can only exhibit a worse fit if misspecification
errors are present. If they are zero, the two models are the same. The misspec-
ification error’s approximation formula is multiplicative in coupon rate, recovery
rate, default probability, and maturity. It is useful to note that the approximation
is quite accurate in capturing the variation in misspecification errors. When we
regress actual on predicted misspecification errors, the R2 lies between 93% and
95%.

Table 4 reports summary statistics of model fit, misspecification errors, model
outperformance, and parameter estimates. The the 25th percentile issuer-day
misspecification error is 4 cents (the median is 13 cents). Thus, as expected, a
large fraction of the data is not greatly affected by the pricing differences between
the two models. However, the mean misspecification error is more than twice as
large and equal to 30 cents, which means that there are many bonds with large
implied price differences across the two models (when input parameters are held
constant). The 95th percentile of the misspecification error distribution is 1.02,
which is substantial, and the 75th percentile (unreported) is 0.30, which is also
quite large. The median observed bond price is equal to 101.33. As a result, these
numbers are directly comparable to those in Table 1. Of course, when estimating
the two models separately, which is what we do next, the full-coupon recovery
model may adjust parameters, resulting in possible biases. However, as we saw in
Section 4, when discussing the bond prices of defaulted companies, an incorrect
model not only produces biased parameter estimates, but a worse fit.

is assumed to depend only on the rating. The ratings-based valuation model is consistent with
numerous pronouncements from the Basel Committee on Banking Supervision (2010, 2017). It
performs poorly primarily because of the erroneous assumption that all firms that have the same
rating have the same risk; analyzing it is therefore less relevant when comparing no-coupon and
full-coupon recovery models.
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6.2 Model Performance

Following Bakshi, Madan and Zhang (2006) we report mean absolute pricing error
to compare model fit.25 Another alternative could be to measure performance
comparing yields or credit spreads. We do not choose this route because our anal-
ysis of model misspecification errors and our measure of outperformance focuses
specifically on dollar pricing errors, not yields. In addition, one contribution of
our paper is to point out that yields and credit spreads should not be used to price
bonds.

As noted previously, if bonds are priced according to the no-coupon recovery
model and not the full-coupon recovery model, this has two implications. First,
in a sample of bonds that have large default risk, we should detect that the no-
coupon recovery model has a better fit. Second, the outperformance will be larger
when the two models disagree by more (i.e. when the misspecification errors
are larger and more variable). We next provide evidence supporting both of these
implications. We note that there is nothing mechanical about the relation between
misspecification errors and model outperformance. If bonds were priced according
to the full-coupon recovery model, we would find that it outperforms the no-
coupon recovery model, and that it does so by more when differences between
model implied prices are larger.

6.2.1 Model 1: A Fixed Recovery Rate

We compare the two models after fitting them independently to the data. For each
issuer-day, we estimate both the no-coupon and full-coupon recovery models and
calculate the volume-weighted mean absolute error. These average error statistics
are reported in Table 4 Panel A.

As expected, we find that the no-coupon recovery model fits the data better
than the full-coupon recovery model. The mean model outperformance is equal
to 0.07. However, also as expected, there are many observations for which the
error difference is very small (median outperformance is equal to 0.02). At the
same time, there are also issuer days with larger pricing error differences. The
95th percentile of the outperformance distribution is 0.27. We also report overall
model fit – the no-coupon recovery model has an average dollar pricing error of
0.35.

What is more relevant for the performance comparison is how the models per-
form when model prices differ, resulting in misspecification errors. In fact, having
a large misspecification error standard deviation within the data sample is cru-
cial to validating the no-coupon recovery model. When predicted misspecification

25Eom, Helwege and Huang (2004) calculate percentage pricing errors, and Bakshi, Madan
and Zhang (2006) also report these. In our sample, 90 percent of prices lie between 95.70 and
110.11; results are therefore robust to using percentage errors instead.
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errors are small, for example because the default probabilities are low, pricing
differences will also be small. Reflecting the large portion of the data with low
misspecification errors, we see that a large fraction of the data also has a low
standard deviation of those errors. The average standard deviation is 26 cents,
the median is 12 cents, and the 25th percentile is 3 cents.

But, even if predicted misspecification errors are large, the full-coupon recovery
model may still generate low pricing errors, for example, if the bonds in the specific
issuer-day sample have very similar predicted misspecification errors. In this case
the misspecified model will be able to adjust by changing parameters and the
resulting pricing error differences relative to the no-coupon recovery model can be
small, albeit at the cost of biased model parameter estimates. But, if there is a
high variability in the misspecification errors, the incorrect model will fail to fit
prices as well as the no-coupon recovery model.

As predicted, we find that the no-coupon recovery model outperformance is
large when the misspecification error standard deviation is large. The second set of
results in Panel A, first line, is for the subsample of issuer days in the top quartile
of the misspecification error standard deviation distribution. In that group, the
minimum misspecification error standard deviation is 30 cents and the mean is 75
cents. Correspondingly, the outperformance (difference in mean absolute errors
across the two models) is much larger, exactly as our model predicts. The average
outperformance more than triples to 0.22. Even though we are considering only
25% of issuer days, this sample reflects prices from 51,133 observations, which is
30.4% of observations, or 5.7 observations per issuer-day, compared to 4.7 for the
full sample.

Breaking up the sample across credit rating groups, we find, as expected,
that the misspecification error increases with rating. The misspecification error
increases from 0.10 (AA and above) to 0.94 (BB and below). Correspondingly,
model outperformance increases with rating, from 0.03 (AA and above) to 0.23
(BB and below). The main driver for larger misspecification errors is a larger
default probability, which in model 1 is the parameter estimated. It increases
from 1.1% (AA and above) to 4.5% (BB and below). These are the parameters
for the no-coupon recovery model.

When estimating the full-coupon recovery model, estimated default probabil-
ities are larger. If they were not, the full-coupon recovery model would produce
prices that are too large on average. We therefore can see the bias introduced when
using the misspecified model. Of course, all models are incomplete approximations
of reality and we can also compare the no-coupon recovery model estimates to
independently-estimated default probabilities based on historical data, summary
statistics for which we report below. Those numbers are lower, mainly because
Model 1 assumes no variation in illiquidity.
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6.2.2 Model 2: A Variable Recovery Rate

We next estimate Model 2, which relaxes the constraint on the recovery rate, but
continues to estimate implied default probabilities from bond prices. Adding a
degree of freedom, we expect the overall fit to increase and the no-coupon recovery
model outperformance to decrease, because there are now two parameters also
in the full-coupon recovery model, both of which can be biased. Indeed, average
outperformance is equal to 0.03, but that number approximately triples to 0.10 for
the high misspecification standard deviation sample. As before, outperformance
increases with credit rating. We also note that average estimated recovery rate is
close to 50% (restricted value in Model 1) both for the full sample, as well as for
rating subsamples.

6.3 Determinants of the No-coupon Recovery Model’s Outper-
formance

We next explore the determinants of the no-coupon recovery model’s outperfor-
mance. Table 5 Panel A reports outperformance for the full sample and several
subsamples. In Panel B we regress outperformance on different sets of explana-
tory variables. On average, the no-coupon recovery model provides a better fit
(also see Table 4). For Model 1, pricing errors are 7.2 cents larger when using
the full-coupon recovery model and the difference is statistically significant. We
have already seen that the (in)ability of the full-coupon recovery model to fit the
data reflects its misspecified assumption. Thus, we expect a strong relationship
between the no-coupon recovery model outperformance and the misspecification
error’s standard deviation.

We first focus on the subsample with the top 25% of default probabilities. For
that subsample, the average outperformance is 19.1 cents, almost three times as
large as in the full sample. This outperformance is even larger when considering the
subsample with the largest 25% average misspecification error issuer days. Here
the outperformance is 21.8 cents on average. As expected, the variable finding the
largest outperformance is the misspecification error’s standard deviation. It may
be large because of a large dispersion in maturities combined with large default
probabilities. The misspecified full-coupon recovery model does not have sufficient
degrees of freedom to match the data well. The no-coupon recovery model has,
on average, a 22.4 cent lower pricing error than the full-coupon recovery model.

The pattern is the same, only stronger, when examining the pricing errors
in the top deciles. For large default probability issuer days the outperformance
is equal to 29.5 cents, for the misspecification error it is 35.4 cents and for the
standard deviation it is equal to 37.3 cents. Pricing error differences are large when
the model predicts them to be large. A similar pattern emerges for Model 2, though
pricing error differences are smaller throughout, reflecting the additional degree of
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freedom (and potential bias) in that model. For the top decile of misspecification
error standard deviations, outperformance is on average equal to 16 cents, which
is highly statistically significant.

We next explore in more detail what determines the size of the no-coupon
recovery model outperformance. We regress pricing error differences on maturity,
coupon, and default probabilities. Together with the recovery rate, these four
variables are the main determinants of the misspecification error. The recovery
rate is fixed in Model 1 and is therefore not included, but we do include it when
explaining variation in the outperformance of Model 2. Maturity and the default
probability are highly significant with a positive sign; the coupon rate also has a
positive sign but is insignificant.

All variables enter the misspecification error, but they do so in a specific way.
We next include the actual misspecification error and the misspecification error
standard deviation into the regression. We expect the dispersion of the misspec-
ification errors to determine model outperformance. When we include the mis-
specification error’s standard deviation, the coefficient on it is highly significant,
while the coefficients on all the other variables becomes either indistinguishable
from zero or switches sign. The R2 of the regression increases from 37.1% to
60.6%. Dropping all the other variables and keeping only the misspecification
error’s standard deviation in the regression results in a similar fit of 58.4%.

The ability of the misspecification error’s standard deviation to explain the
variation in model outperformance is direct evidence supporting our hypothesis
that bond market prices are consistent with the no-coupon recovery model in-
stead of the full-coupon recovery model. When fitting Model 2, the results are
very similar. All four variables individually enter with the expected sign. When
the misspecification error’s standard deviation is included along with the average
misspecification error, the coefficients drop in size by more than half or become
negative. As before, the regression R2 increases dramatically from 18.7% to 41.4%
and it is only slightly smaller at 38.2% when only the misspecification error’s stan-
dard deviation remains in the regression.

To summarize, our analysis provides strong evidence that the pricing error
differences between the two models are statistically significant for the full sample.
Importantly, variation in model outperformance occurs exactly when the model
predicts it. This evidence is for a sample consisting of 93.5% investment grade debt
(98.7% with a rating of BB+ or above) and thus one where market participants
perceive default is not imminent.

6.4 Outperformance Over Time

We have documented the no-coupon recovery model’s outperformance in the full
sample and in sub-samples. We next consider the time variation in its outper-
formance. Each week we calculate average outperformance and the average mis-
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specification error’s standard deviation for all issuer days. Figure 4 plots the time
series of the no-coupon recovery model’s outperformance based on Model 1. There
is some noticeable time variation. Toward the end of 2018 and in the beginning of
2019 the model’s outperformance increases, reaching a local peak of about 11 cents.
This episode happened contemporaneously with a stock market downturn and a
corresponding increase in volatility and default probabilities. Then, at the begin-
ning of the pandemic in early 2020 we see a large increase in model outperformance
reaching a weekly average of 37 cents. Toward the end of the sample, in 2022, the
average outperformance reaches 24 cents. Note also that average outperformance
of the no-coupon recovery model is positive throughout the sample.

As reported in Table 5, the misspecification error’s standard deviation explains
58% of the variation in no-coupon recovery model outperformance. Using weekly
averages – the data from the figure – results in an R2 of 79%. We note that,
during the pandemic, there is a lot of variation in both outperformance and the
misspecification error’s standard deviation; during that time the relationship is
weaker (R2 of 64%). Figure 5 plots weekly averages outside of 2020. We find a clear
linear relation between outperformance and the misspecification error’s standard
deviation; the R2 of this relationship is 93%. In short, model outperformance is
large when we expect it to be large.

For Model 2 the pattern outside of 2020 is very similar even though the av-
erage outperformance is lower (see Tables 4 and 5). However, during the height
of pandemic (March 2020) the relationship between outperformance and the mis-
specification error’s standard deviation is no longer present when using Model 2.
This may be due to the additional degree of freedom in that model and reflects the
lower overall no-coupon recovery model outperformance. Using a more constrained
model with a historically-estimated default probability and in which we estimate
the recovery rate (discussed below) results in a strong relationship between model
outperformance and the misspecification error’s standard deviation in 2020.

6.5 Model 3: Using a Historically Estimated Default Probability
and an Illiquidity Discount

In Models 1 and 2, the default probability is estimated implicitly. We now use
historically-estimated default probabilities from a proportional hazard rate model
as an input (as discussed in Section 4.1.2). The data are from the Kamakura Risk
Information Services (KRIS) division of SAS Institute, Inc. We also allow for an
effect of illiquidity (as discussed in Section 2.2).

Table 6 reports estimation results. The no-coupon recovery model’s mean
average pricing error is equal to 0.29, a little bit lower than Model 2. The av-
erage misspecification error is equal to 0.21 and the average no-coupon recovery
model’s outperformance is 0.02. When focusing on the large misspecification er-
ror’s standard deviation subsample, as expected, the no-coupon recovery model’s
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outperformance more than triples and is equal to 0.07.
The median default probability used as an input to the model is 0.7% and

the mean is equal to 1.3%.26 We estimate the mean recovery rate as 49%, in line
with the restriction in Model 1 and the mean recovery rate in Model 2. The mean
illiquidity parameter is -0.4%. It is useful to note that both the recovery rate and
illiquidity estimates are reasonable. This is, of course, not guaranteed given that
our estimates are implicitly estimated using the traded bond prices and the no-
coupon recovery model. Jankowitsch, Nagler, and Subrahmanyam (2014) report
an average recovery rate value of 0.38. Since our recovery rate is in fact the recovery
rate futures price, as shown in the appendix, it is expected that our estimate
should be slightly larger than these estimates. At the same time, our estimated
0.26% (median) and 0.42% (mean) illiquidity discount, though somewhat lower,
are broadly consistent with, for example, the spread between Aaa-rated corporate
bonds and Treasury debt. We next discuss variation in the estimated illiquidity
parameter over time and note that it also spikes in March of 2020, similar to the
Aaa-Treasury spread.

6.6 Time Variation in Parameter Estimates

We next study the illiquidity and recovery rate parameter estimates over time.
Before proceeding, it is useful to get a sense of what kind of variation is present
in the default probabilities (which are an input to the model). Figure 6 reports
monthly average default probabilities over the sample period. Two important
drivers of default probabilities are volatility and leverage (see, e.g., Merton (1974),
Jarrow (2009), Guha, Sbuelz, and Tarelli (2020)), which we also plot. Variation in
default probabilities over time are dominated by the effect of the pandemic in 2020.
It is also notable that variation in default probabilities is tracked by variation in
stock return volatility, while book leverage remains close to constant throughout
the sample period.

Figure 7 plots weekly average illiquidity. We notice a slight increase in late 2018
and early 2019. The more striking and larger increase in the estimated illiquidity
parameter occurs at the beginning of the pandemic. Average illiquidity increases
to just under 3%. This increase is matched by an increase in the Aaa-Treasury
spread, which we also plot in the figure. We interpret the Aaa-Treasury spread
as a related measure of illiquidity. Indeed, as is evident from the figure, the two
series move together; the correlation is equal to 65% (in levels, 79% in changes).
The close relationship between the Aaa-Treasury spread provides independent
validation of our model and its implied corporate bond illiquidity measure.

There is also considerable variation in the illiquidity parameter across ratings.
Figure 8 shows the average illiquidity discounts at a monthly frequency across rat-

26These probabilities lie below estimated default probabilities in Models 1 and 2. Those
measures are higher because we do not include an illiquidity discount in those models.
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ing groups. The three investment grade groups have somewhat similar illiquidity
levels, while the non-investment grade’s group has noticeably larger illiquidity and
is also less correlated with the other three groups.27

The average recovery rates over time are plotted in Figure 9. The fact that
there is no recovery of coupons in the event of default means that recovery rates
can be inferred directly from bond prices. This is an important empirical novelty
compared to an inability to disentangle recovery rates and default probabilities if
equal seniority is assumed for coupons and principal, and there is a single spread
used to discount all cash flows. There is not much variation over time, supporting
the assumption of a fixed recovery rate in Model 1. Indeed, there is also little
variation in average recovery rate across rating groups (Table 6 Panel B).

We can use these estimates to interpret what happened during the height
of the COVID pandemic. Figure 10 plots weekly averages of recovery rates and
illiquidity parameters in 2020. From Figure 6 we already know that the historically
estimated default probabilities increased dramatically in early 2020. We can now
see that there was also a dramatic increase in illiquidity, from an average of 0.18%
in January to a maximum of 2.8% in the second half of March. There is a modest
increase in recovery rates from close to 55% in January to 68% in March, perhaps
due to an increased market focus on short-term liquidity-induced defaults, which
may have been perceived to result in slightly lower levels of loss in the event of
default. Bond prices can decline either because of higher default probabilities,
lower recovery rates, or higher illiquidity. Our estimates suggest that, at least
during March of 2020, the two main effects were a loss of liquidity and an increase
in default probabilities.

6.7 Robustness Tests

This section provides several robustness tests of the model’s outperformance.

6.7.1 Out-of-sample Model Performance

Our analysis so far is based on fitting the pricing model in-sample. A concern is
that in-sample model fit statistics can be biased by overfitting noise in the data.
To address this issue, our focus was on relative performance. We measured if the
no-coupon model had a lower overall error as compared to the full-coupon recovery
model. Both models have the same number of parameters and a similar structure.
Unless we believe that there is a differential bias in the model fit statistics, our
measure of outperformance should not be affected by the in-sample methodology.

27Investment grade illiquidity averages lie below the Aaa-Treasury spread (see Table 6) sug-
gesting that, although the two measures are highly correlated in levels and changes, they do not
capture exactly the same market friction.
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Nevertheless, it is useful to check relative model performance using an out-of-
sample pricing approach as well. Each day, we split the sample into two groups of
equal or close to equal size (if there are an odd number of observations, one group
will be slightly larger than the other). One group is the estimation sample that is
used to calculate the models’ parameters – default probability, recovery rate, and
illiquidity. We take these estimated parameters and compute fitted prices for the
other group’s observations, the out-of-sample group. We fit both the full and the
no-coupon recovery model in this way. In order to ensure that we can estimate
the parameters in this manner, we restrict attention to issuer days with at least
four observations; that way each group always contains at least two observations.
We repeat the process but switching the groups so that the second group is now
used for estimation purposes. To ensure that the samples are comparable, groups
are assigned based on maturity rank.

We estimate all three model implementations, Models 1, 2, and 3. We report
full-sample no-coupon recovery model outperformance as well as outperformance
for the sample with large misspecification error standard deviations. Table 7 Panel
A reports summary statistics. All three models show the no-coupon recovery
model outperformance and in each case the magnitude of the outperformance
increases substantially for the sample with large misspecification error standard
deviation observations. These are the main two patterns previously identified,
and both are present when using this out-of-sample estimation approach. We find
that average outperformance is highly statistically different from zero (Panel B)
for all three models and for the full sample as well as the large misspecification
error standard deviation subsamples. Panel C reports average outperformance
across rating groups. As the credit rating increases, the no-coupon recovery model
outperformance increases also, consistent with the in-sample estimation results.

6.7.2 Errors and Biased Parameter Estimates in the Full-Coupon Re-
covery model: A Quasi-Simulation

Another way to check that our results are due to the misspecified assumptions
underlying the full-coupon recovery model is to calculate pricing errors using a
simulation. We do this using the actual data as the basis for a quasi-simulation.
Specifically, we assume that the no-coupon recovery model’s parameters are unbi-
ased and calculate market prices based on that model. We then use the full-coupon
recovery model to price these bonds. This enables us to trace out the effects of
using the full-coupon recovery model’s misspecified assumptions on model prices
and parameters.

We find that the expected biases appear. The misspecification error’s standard
deviation is closely related to the pricing error. Thus, whenever the full-coupon
recovery model has more difficulty using the parameters to fit the data, the no-
coupon recovery model’s outperformance is larger, just as we observed in the
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main sample. We also find that the full-coupon recovery parameter estimates are
indeed biased relative to the no-coupon recovery model’s parameters, which in this
exercise are assumed to be the actual underlying parameters.

In Model 1 the default probability has a downward bias; the effect is similar to
what we see in the main sample. In Model 3 the recovery rate has a downward bias,
as we would expect. The full-coupon recovery model’s estimated recovery rate is
3% lower for the full sample and 4.5% lower for the subsample with the highest
quartile of the misspecification error’s standard deviation. For the illiquidity pa-
rameter the effect is much smaller. For the full sample, the bias is equal to 0.02%
(full-coupon model-implied illiquidity is more negative), while it is 0.06% for the
top 25% of the misspecification error’s standard deviation subsample. In short,
the patterns we find in the data are directly driven by the full-coupon model’s
assumptions.

For Model 2, the biases are larger. The recovery rate is 28% too large, while
the default probabilities are on average 1.4% too large. This model’s instabil-
ity underscores the need for more restricted models, namely Model 1 (restricted
recovery rate) and Model 3 (historically-estimated default probabilities).

6.7.3 Daily Observation Cutoffs

In our estimation, we group bonds each issuer day and then fit the two pricing
models. We require a minimum of two bond price observations for each issuer
day. Another possibility is to choose minimum observation cutoffs, for example
requiring at least five or ten observations for each issuer day. Such a restriction has
the benefit of reducing noise but shrinks the sample size. We have checked that our
results are robust to increasing the minimum required number of observations.28

6.7.4 Monthly Observations

An alternative way to reduce noise is to pool observations each issuer month
rather than each issuer day. This approach significantly increases the number of
observations in each group. It also has the benefit of not reducing the overall
sample size. Our results are robust to this change too. In particular, we see a
similar level of outperformance of the no-coupon recovery model, though both
models fit less well since there is now less parameter flexibility. Our findings
suggest that outperformance is not directly linked to sample size. This result is
consistent with our findings that the misspecification error’s variance explains well
the variation in model outperformance.

28In the case of Model 3, the no-coupon recovery model outperformance increases substantially
when restricting attention to the sub-sample of issuer days with ten or more observations; however
it cuts the number of issuers to only 18.
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6.7.5 Alternative Recovery Rate Estimation Bounds

As pointed out, our data set contains a lot of financial institutions, partly because
they issue a lot of debt, which is then actively traded in the secondary market.
Regulated financial institutions may have higher recovery rates than other firms
since the regulator may close or seize the bank before losses increase. It is therefore
possible that, for at least a subset of the data, recovery rates lie above the 80%
cutoff we impose. We have checked what happens if we increase the upper bound
on recovery rate to 95%. This increased flexibility may or may not be useful for
Model 2, which, as we have discussed, is quite flexible already. However, we may
see an effect for Model 3, and that is indeed what we find. No-coupon recovery
model outperformance is higher for both models. This evidence suggests that for
a subsample of the data issuers have high expected levels of recovery rates. When
using this less restrictive estimation for the out-of-sample estimation, Model 2
outperformance drops while Model 3 outperformance increases. This evidence
supports our conjecture that Model 2 is somewhat unstable, while it supports the
use of restrictions (Models 1 and 3).

7 Conclusion

This paper presents evidence that the common corporate bond pricing assump-
tion of equal seniority of principal and coupon payments is not supported by
market transaction prices. We propose a tractable coupon bond valuation model,
which includes a more realistic recovery rate process that distinguishes between
coupon payments received before and after default. This setup has important ad-
vantages that support our empirical investigation. (1) The model implies that a
single spread or spread term structure cannot be used to discount all cash flows.
Instead, seniority-specific discount rates reflect different recovery rates for prin-
cipal and coupons. (2) The model has a clear prediction about the importance
of modeling the market practice of zero recovery paid on coupons after default.
We calculate misspecification errors – those resulting from using the full-coupon
recovery model rather than the no-coupon recovery model. When these errors
are large, differences in the no-coupon and the full-coupon recovery model’s pre-
dictions are larger. Misspecification errors are shown to depend directly on the
coupon, recovery rate, default probability, and time to maturity, and they can be
substantial in size.

We find that our no-coupon recovery model’s predictions are reflected in a
large data set of bond transaction prices. This represents evidence that market
prices of risky coupon bonds reflect zero coupon recovery after default. The model
has a clear prediction when no recovery on coupons after default is relevant for
pricing and when it is less important. Indeed, if default probabilities, coupons,
recovery rate, or maturity are small, then the effect of the differing coupon recovery
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assumptions has only a very small impact. We find evidence supporting this
prediction, while also identifying our model’s outperformance in the full sample.

We also document that model outperformance is closely related to the mis-
specification error’s standard deviation. When that standard deviation is large,
our model predicts that bond prices will be the most affected by the erroneous
assumption of full-coupon recovery after default. The fact that the misspecifica-
tion error’s standard deviation explains model outperformance well is thus direct
evidence supporting the no-coupon recovery model. Separately, we find that the
no-coupon recovery outperformance is evident when considering bond prices of
companies in bankruptcy. Model outperformance is also higher for non-investment
grade issuers.

Finally, our model allows for direct estimation of implied recovery rates and
an illiquidity parameter’s effects on bond prices. When the global pandemic hit
in 2020, default probabilities increased substantially and bond prices dropped. At
the same time, illiquidity increased markedly, consistent with standard corporate
bond illiquidity measures such as the Aaa-Treasury spread.
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Appendix.

The Bond Valuation Formula

This appendix formalizes the pricing model in Section 3. We consider a contin-
uous trading model on a finite horizon [0, T ∗]. The uncertainty in the model is
characterized by a complete filtered probability space (Ω,F , (Ft)t∈[0,T ∗],P) where
the filtration (Ft)t∈[0,T ∗] satisfies the usual hypotheses and F = FT ∗ .29 Here P is
the statistical probability measure.

The default-free money market account earns interest continuously at the
default-free spot rate of interest, rt, which is adapted to (Ft)t∈[0,T ∗]. As in the
text, money market account’s time t value is30

Bt = e
∫ t
0 rsds. (5)

The default-free zero-coupon bond, denoted by p(t, T ) > 0, is adapted to (Ft)t∈[0,T ∗].
We consider a firm that issues a bond with a coupon of C dollars, a face value

equal to L dollars, and a maturity date T . The bond pays the C dollar coupons
at intermediate dates {t1, ..., tm = T}, but only up to the default time τ . For
notational convenience, let the current time t = t0. If default happens in the time
interval (tk−1, tk], then the bond pays a stochastic recovery rate of δtk ∈ [0, 1]
at time tk on the notional of L dollars. It is important to note that default can
happen anytime within this interval, but the payment only occurs at the end. If
default does not happen, the face value of L dollars is repaid at time T .

Let Γt = (Γ1(t), . . . ,Γn(t))
′ ∈ Rn be a collection of stochastic processes char-

acterizing the state of the firm and the market at time t with FΓ
t representing the

filtration generated by the state variables Γt up to and including time t ≥ 0. We
assume that these state variables are adapted to Ft, which implies that FΓ

t ⊂ Ft.
We assume that rt is FΓ

t - measurable.
Let λ : [0, T ∗] × Rn −→ [0,∞), denoted λt = λt(Γt) ≥ 0, be jointly Borel

measurable with
∫ T ∗

0 λt(Γt)dt < ∞ a.s. P, and let Nt ∈ {0, 1, 2, · · · } with N0 = 0
be a Cox process conditioned on FΓ

T with λt(Γt) its intensity process (see Lando
(1998)). Finally, let the default time τ ∈ [0, T ∗] be the stopping time adapted to
the filtration Ft defined by

τ ≡ inf {t > 0 : Nt = 1} .

The function λt(Γt) is the firm’s default intensity. A Cox process is a point pro-
cess which, conditional upon the information set generated by the state variables

29See Protter (2005) for the definitions of these various terms.
30Of course, we assume the necessary measurability and integrability such that the following

expression is well-defined.
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process Γt over the entire trading horizon [0, T ∗] behaves like a standard Poisson
process. In particular,

P(τ > T
∣∣FΓ

T ∗ ∨ Ft ) = e−
∫ T
t λudu

and
P(τ > T |Ft ) = EP

[
e−

∫ T
t λudu |Ft

]
.

We assume that the markets are arbitrage-free.
Assumption. (Existence of an Equivalent Martingale Measure)

There exists an equivalent probability measure Q such that

p(t, T )

Bt
for all T ∈ [0, T ∗] and

vt
Bt

are Q martingales.
It is well known that this assumption implies that the market is arbitrage-free.

See Jarrow and Protter (2008). Given an equivalent martingale measure Q, define
λ̃t ≡ λtκt to be the intensity process of the Cox process under Q where κt(ω) ≥ 0

is a predictable process with
∫ T ∗

0 λt(Γt)κtdt < ∞ a.s. P (see Bremaud (1980), p.
167). The process κt(ω) represents a default jump risk premium.

Let Fr
t denote the filtration generated by rt, Fτ the σ−algebra generated by

the default time τ (see Protter (2005), p. 5), and Fδ
t the filtration generated by

the recovery rate process δt, which is the hypothetical recovery rate obtained if
the assets were liquidated at time t. Finally, let Gt be a filtration independent of
Fr
t ∨Fδ

t ∨Fτ where Ft ≡ Fr
t ∨Fδ

t ∨Fτ ∨Gt. We add the following assumption to
simplify the analytic formulas.

Assumption. (Conditional Independence)
The default-free spot rate rt, the default time τ , and the recovery rate process δt
are independent under Q given the filtration Gt for all t.

Denote the time t ≤ t1 value of the coupon bond as vt, then using risk neutral
valuation yields

vt =
∑m

k=1CEQ
[
1{τ>tk}e

−
∫ tk
t rudu |Ft

]
+ LEQ

[
1{τ>T}e

−
∫ T
t rudu |Ft

]
+
∑m

k=1 LE
Q
[
1{tk−1<τ≤tk≤T}δtke

−
∫ tk
t rudu |Ft

] (6)

where Q denotes the risk-neutral probabilities.
Using the independence assumption, equation (6) simplifies to

vt = Lp(t, T ) [1−Q(t, T )] + (C − Ldt)
∑m

k=1 p(t, tk) [1−Q(t, tk)]
+Ldt

∑m
k=1 p(t, tk) [1−Q(t, tk−1)]

(7)

where
dt = EQ [δτ |Ft ]
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Proof. The only difficult term is EQ
[
1{tk−1<τ≤tk≤T}δtke

−
∫ tk
t rudu |Ft

]
. We have

by conditional independence that

EQ
[
1{tk−1<τ≤tk≤T}δtke

−
∫ tk
t rudu |Ft

]
= EQ [

1{tk−1<τ≤tk≤T} |Ft

]
EQ [δtk |Ft ]E

Q
[
e−

∫ tk
t rudu |Ft

]
.

Using the definition of dt and p(t, tk) gives

vt =
∑m

k=1Cp(t, tk)E
Q [

1{τ>tk} |Ft

]
+ Lp(t, T )EQ [

1{τ>T} |Ft

]
+
∑m

k=1 Lp(t, tk)dtE
Q [

1{tk−1<τ≤tk≤T} |Ft

]
.

To simplify expression (3), we introduce two simple credit derivatives: a sur-
vival and default digital. These building blocks were first discussed in the literature
by Madan and Udal (1998).

At time t, consider the time interval [tk−1, tk] for k = 0, . . . ,m.31 We define a
survival and a default digital as follows

• (A Survival Digital) This security pays $1 at time tk only if default occurs
after tk. The value of this security at time t < tk is

z(t, tk) = EQ
[
1{τ>tk}e

−
∫ tk
t rudu |Ft

]
. (8)

• (A Default Digital) This security pays $1 at time tk if default occurs within
(tk−1, tk]. The value of this security at time t < tk is

x(t, tk) = EQ
[
1{tk−1<τ≤tk}e

−
∫ tk
s rudu |Ft

]
. (9)

Using the conditional independence assumption, we can write these as

z(t, tk) = p(t, tk)[1−Q(t, tk)] (10)

and
x(t, tk) = p(t, tk)[Q(t, tk+1)−Q(t, tk)]. (11)

The identity 1{tk−1<τ} = 1{tk−1<τ≤tk} + 1{τ>tk} implies

EQ
[
1{tk−1<τ}e

−
∫ tk
s rudu |Ft

]
= EQ

[
1{τ≤tk}e

−
∫ tk
s rudu |Ft

]
+EQ

[
1{τ>tk}e

−
∫ tk
s rudu |Ft

]
,

31Note that when k = m, tm = T .

35



which simplifies to the given expression:

p(t, tk)[1−Q(t, tk−1)] = x(t, tk) + z(t, tk). (12)

The left side represents the present value of the tk maturity zero-coupon bond at
time t, which is received only if there is no default before or at time tk−1. The
right side is the present value of the default digital for the interval (tk−1, tk] and
the survival digital with maturity tk.

Using these two digitals, expression (2) can be written as

vt =
∑m

k=1Cz(t, tk) + Lz(t, T )
+Ldt

∑m
k=1 x(t, tk). (13)

This expression shows that a risky coupon bond can always be decomposed into
a portfolio of survival and default digitals.32

The Recovery Rate Futures Price

This section explains why dt can be interpreted as a futures price. Define

dt := EQ [δT ∗ |Ft ]

for t ∈ [0, T ∗] where δT ∗ corresponds to the recovery rate if default happens at time
T ∗. That this can be interpreted as a futures price follows from the commodities
pricing literature (for example see Jarrow (2021), chapter 6). Since dt is a Q−
martingale, the recovery rate futures price is equal to

dt = EQ [δτ |Ft ] ,

which is the risk adjusted expected value of the recovery rate at the default time
τ . The relation between the recovery rate process δt and the futures price dt is
given by the following expression

δt = dtE
Q
[
Bt

Bτ
|Ft

]
. (14)

Proof (Expression (14)).

Define the recovery rate process δt on [0, T ∗] as the liquidation value of the firm at
time t. Using the notation in the text, the following time line documents relevant
dates.

32We note that the valuation of corporate coupon bonds is only one example of the advantages
of pricing using these building block securities. Other securities that depend on default, e.g.
CDS contracts, sovereign bonds, and “bail in” bonds can also be priced using the building block
securities as well.
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0 · · · t · · · tk τ · · · tk+1 · · · τ∗ · · · T ∗

default payment
(d0, δ0) (dt, δt) (dτ , δτ ) (dτ∗ , δτ∗) (dT ∗ = δT ∗)

Both τ and τ∗ are stopping times with τ∗ > τ . τ is the firm’s default time.
Due to cross-defaulting provisions, if one liability defaults, all default at the same
time. τ∗ corresponds to the date the payments on all of the firm’s liabilities are
paid, after liquidation or financial restructuring. It occurs, as indicated, after the
default date. Time T ∗ is when the model ends. The arbitrage free value of the
recovery rate payment at time t ∈ [0, T ∗] is

δt = EQ
[
δT ∗

BT ∗
|Ft

]
Bt.

Using iterated expectations, we obtain

δt = EQ
[
δτ
Bτ

|Ft

]
Bt. (15)

Under the conditional independence of δt and rt, we can rewrite this as

δt = EQ
[
EQ [δτ |Ft ∨ τ ]EQ

[
Bt

Bτ
|Ft ∨ τ

]
|Ft

]

=
M∑
i=1

EQ [δti |Ft; ti−1 < τ ≤ ti ]E
Q
[
Bti

Bτ
|Ft; ti−1 < τ ≤ ti

]
ProbQ [ti−1 < τ ≤ ti |Ft ]

=

M∑
i=1

EQ [δti |Ft; ti−1 < τ ≤ ti ]E
Q
[
Bti

Bτ
|Ft; ti−1 < τ ≤ ti

]
[Q(t, ti)−Q(t, ti−1)]

where tM = T ∗ and Q(t, ti) = EQ [1τ≤ti |Ft ] = ProbQ [τ ≤ ti |Ft ].
Recall that all payments occur at the next payment date after default.
Using the conditional independence of δt and rt from τ , we can rewrite this as

δt =

M∑
i=1

EQ [δti |Ft ]E
Q
[
Bt

Bti

|Ft

]
[Q(t, ti)−Q(t, ti−1)] .

Last, using the definition of dt and noting that EQ
[
Bt
Bti

|Ft

]
= p(t, ti) we get

δt = dt

M∑
i=1

p(t, ti) [Q(t, ti)−Q(t, ti−1)] .

We note that this implies

δt = dtE
Q
[
Bt

Bτ
|Ft

]
.
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End of proof.
Given this expression, it is easily seen that the recovery rate futures price is

strictly greater than the recovery rate δt since EQ
[
Bt
Bτ

|Ft

]
< 1. This difference is

expected to be small since interest rates are small over our sample period.

Misspecification Error Approximation

In the event of default, the present value of the payoff for the first coupon is equal
to the discounted value of the product of the coupon rate, the recovery value, and
the probability of default, i.e. Cdtp(t, t1)Q(t, t1). For the second coupon, default
can occur either in the first or in the second period. The present value of the payoff
in period one is the same as for the first coupon. The conditional expectation at
time one of the payoff in period two is also the same as for the first coupon.
However, this payment still needs to be discounted back to time zero and adjusted
to take into account that the firm must have survived to period one. For longer
time periods, a similar logic applies. This implies that the misspecification error is
exactly proportional to the product of the coupon payment and the recovery value.
In contrast, the total misspecification error is only approximately proportional to
the error resulting from the first coupon. The reason is that the probability of
survival depends on the default probability and because payments farther into the
future will be discounted by a larger amount.

Next we consider the effect of the bond’s maturity or, equivalently, the number
of coupon payments. Ignoring discounting and the adjustment for the probability
of survival, the expected recovery payment from the second coupon is twice as
large as for the first coupon. The reason is that default on the second coupon can
happen either in the first or the second period. For a bond receiving m coupon
payments the factor is therefore m(m + 1)/2. This means that the approximate
total error is equal to Cdtp(t, t1)Q(t, t1)m(m+ 1)/2.
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Figure 1: Lehman Brothers Pricing Errors 

 

 
Figure 2: Pacific Gas & Electric Pricing Errors 

 

 

 

 



Figure 3: Weatherford International Pricing Errors 

 

 
Figure 4: Outperformance and misspecification error SD over time (Model 1) 

 
 
 



Figure 5: No-coupon recovery model outperformance outside of 2020 (Model 1) 

 
 

Figure 6: Probability of default (historically-estimated), leverage and volatility over time 

 



Figure 7: Model illiquidity and Aaa-Treasury spread 

 

Figure 8: Illiquidity across credit rating groups 

 



Figure 9: Average recovery rate over time 

 

Figure 10: Recovery rate and Illiquidity in 2020 

 



maturity recovery
default 

probability
coupon

misspec.

error 

2 0.5 1% 2.51% 0.03

2 0.5 2% 3.03% 0.07

5 0.5 1% 2.51% 0.16

5 0.5 2% 3.03% 0.39

10 0.5 1% 2.51% 0.60

10 0.5 2% 3.03% 1.39

30 0.5 1% 2.51% 4.33

30 0.5 2% 3.03% 9.62

Table 1: Misspecification error determinants

In this table we calculate prices based on the no‐coupon recovery and the full coupon

recovery models. We assume a flat risk‐free term structure of 2%, a flat default probability

term structure and different maturities. Coupons are chosen so that bonds (based on the no‐

coupon recovery model price) trade at par. We report the misspecification error resulting

from using the full‐coupon recovery instead of the no‐coupon recovery model (column five,

missspec. error). 



Def prob 1% 1% 2% 2%

Recovery 0.5 0.5 0.5 0.5

Illiquidity 0 ‐0.5% 0 ‐0.5%

Maturity

1 0.50% 1.01% 1.01% 1.51%

3 0.49% 0.99% 0.98% 1.48%

5 0.48% 0.98% 0.94% 1.44%

10 0.44% 0.93% 0.86% 1.34%

1 1.02% 1.52% 2.04% 2.55%

3 1.02% 1.52% 2.04% 2.55%

5 1.02% 1.52% 2.04% 2.55%

10 1.02% 1.52% 2.04% 2.55%

Table 2: Coupon and principal spreads

This table reports spreads appropriate for discounting coupons and principal (C and P) for

various maturities, default probabilities, and illiquidity values. As in the previous table, we

assume a flat risk‐free term structure of 2% and a flat default probability term structure. Panel

A reports spreads appropriate for disounting principal, Panel B reports spreads appropriate for

discounting coupons.

Panel A: Principal spreads

Panel B: Coupon spreads



Coupon Maturity Spread
Maturity 

range
Maturity SD

No. of 

obs.
Rating

Mean 3.07 3.1 81 3.9 1.8 5 A‐

SD 1.26 2.3 185 2.3 1.0 3 2

p5 1.25 0.3 14 0.9 0.5 2 AA‐

p50 2.85 2.6 58 3.5 1.6 4 A‐

p95 5.45 8.2 215 8.6 3.5 11 BB+

No. of obs 168,285      168,285      168,285      35,635 35,635 35,635 35,635

TLTA SIGMA Spread TLTA SIGMA Spread

No of obs

AA, above 0.89 0.24 46 0.11 0.16 35 5,650

A 0.89 0.30 58 0.12 0.17 56 17,297

BBB 0.86 0.41 101 0.12 0.26 328 9,981

BB, below 0.84 0.46 210 0.13 0.22 292 2,707

Averages Standard deviations

Issuer‐day level stats

Table 3: Summary statistics

This table reports detailed summary statistics for the main sample of bond prices (the sample which we use to

perform our empirical analysis). Panel A reports bond characteristics and overall ratings. We report both

observation‐ and issuer‐day‐level statistics. Panel B contains issuer‐day level statistics by rating group.

Maturity range is the difference for each issuer day between the maximum and minimum maturity; maturity

SD is the issuer day maturity standard deviation; number of observations counts how many bond prices are in

the data set each issuer day (we require a minimum of two), Rating is the S&P issuer credit rating, TLTA is the

ratio of COMPUSTAT book value of total liabilities divided by book value of total assets, SIGMA is the stock

return standard deviation. To be included in the sample, the spread, coupon, and maturity must be positive,

and the maturity range (if there are only two observations) must be at least 0.5. The restrictions, which result

in only a small share of the data being dropped, are discussed further in the text.

Panel A: Bond characteristics

Panel B: Firm characteristics across ratings

Bond‐level stats



Mean abs error 

(MAE)
MAE difference Avg Miss error

Def Prob (no‐

coupon rec)

Def Prob (full 

coupon rec)

Mean 0.35 0.07 0.30 1.8% 2.0%

p5 0.02 0.00 0.01 0.4% 0.4%

p50 0.26 0.02 0.13 1.3% 1.4%

p95 0.98 0.27 1.02 4.4% 5.1%

Number of issuer days: 35,635

Top quartile miss SD 0.66 0.22 0.85 3.3% 3.9%

AA, above 0.25 0.03 0.10 1.1% 1.2%

A 0.30 0.05 0.19 1.3% 1.4%

BBB 0.45 0.10 0.42 2.2% 2.5%

BB, below 0.53 0.23 0.94 4.5% 5.2%

Mean abs error 

(MAE)
MAE difference Avg Miss error

Def Prob (no‐

coupon rec)
Recovery rate

Mean 0.32 0.03 0.52 2.6% 0.51

p5 0.01 0.00 0.00 0.4% 0.10

p50 0.24 0.01 0.11 1.8% 0.79

p95 0.90 0.14 2.18 7.7% 0.80

Number of issuer days: 35,635

Mean 0.46 0.10 1.71 5.7% 0.78

AA, above 0.23 0.01 0.19 1.6% 0.50

A 0.28 0.02 0.34 1.9% 0.49

BBB 0.40 0.05 0.71 3.3% 0.54

BB, below 0.44 0.08 1.72 6.7% 0.56

Subsamples: high misspecification error standard deviation, rating groups

Subsamples: high misspecification error standard deviation, rating groups

Panel B: Model 2 (variable recovery rate and default probability)

Table 4: No‐coupon recovery model outperformance statistics and parameters

This table reports summary statistics ofmodel fit. Panel A reports statistics for a model where recovery rate

is set equal to 0.5 (Model 1), Panel B reports results when allowing for a variable recovery rate between 0.1

and 0.8 (Model 2). Both models restrict default probability to lie above 0.1%. Estimation is done minimizing

the volume‐weighted squared pricing error. All data are reported at the issuer‐day level. Mean absolute

error (MAE) is the no‐coupon recovery volume‐weighted error for a given issuer day. MAE difference is the

difference between the full‐coupon recovery and the no‐coupon recovery model MAE.Avg miss error is the

average misspecification error, Def prob is the fitted default probability, which is reported first for the no‐

coupon recovery model and next when estimated using the full‐coupon recovery model. In each panel we

also report model fit statistics for a subsample of issuer‐day observations in the top 25 percent of within

issuer‐day misspecification error standard deviation, as well as for four rating groups. 

Panel A: Model 1 (fixed recovery rate, variable default proability)



Sample full
PD 

top quartile

Miss error

top quartile

Miss err SD

top quartile

PD 

top decile

Miss error

top decile

Miss err SD

top decile

Average 0.072*** 0.191*** 0.218*** 0.224*** 0.295*** 0.354*** 0.373***
(0.014) (0.038) (0.038) (0.037) (0.088) (0.080) (0.077)

Average 0.032*** 0.091*** 0.100*** 0.100*** 0.126*** 0.162*** 0.160***
(0.005) (0.014) (0.014) (0.014) (0.029) (0.028) (0.029)

Issuer days 35,635 8,909 8,909 8,909 3,563 3,564 3,564

Maturity 0.031*** ‐0.011 0.015*** 0.003
(0.005) (0.009) (0.002) (0.003)

Coupon 0.009 ‐0.021** 0.013** 0.006***
(0.008) (0.009) (0.006) (0.002)

Def Prob 6.378*** 1.658 0.309 ‐0.634**
(1.867) (1.028) (0.197) (0.282)

Recovery 0.069*** 0.032**
(0.011) (0.015)

Miss error 0.050* ‐0.007
(0.028) (0.018)

Miss err SD 0.312*** 0.373*** 0.068*** 0.057***

(0.050) (0.047) (0.025) (0.013)

R‐square 0.371 0.606 0.584 0.187 0.415 0.382

Issuer days 35,635 35,635 35,635 35,635 35,635 35,635

This table reports averages of volume‐weighted mean absolute error differences comparing the full‐coupon

recovery model and the no‐coupon recovery model. Panel A reports averages for different samples; Panel B

reports results from regressions ofmodel outperformanc (i.e. volume‐weighted MAEdifference) on different

sets of explanatory variables. We report results for both Model 1 (fixed recovery rate, variable default

probability) and Model 2 (variable recovery rate and default probability). PD is default probability, Miss

error is the average within issuer‐day misspecification error and Miss error SD is its standard deviation.

Recovery rate is from the no‐coupon recovery model; coupon and maturity are averaged at the issuer‐day

level; Def prob is the fitted default proability. Standard errors, reported below coefficients, are robust and

clustered by issuer and date; ***denotes significant at the 1% level, ** at the 5% level and * at the 10%

level.

Table 5: Determinants of model outperformance

Panel A: No‐coupon recovery model outperformance ‐‐ full and subsamples

Panel B: Determinants of variation in outperformance 
Model 1 Model 2

Model 1 (fitted PD, fixed recovery rate)

Model 2 (fitted PD and recovery rate)



Mean abs 

error (MAE)

MAE 

difference

Avg Miss 

error

Default 

Probability
Illiquidity Recovery rate

Mean 0.29 0.02 0.21 1.3% ‐0.4% 0.49

p5 0.00 ‐0.03 0.00 0.1% ‐1.5% 0.10

p50 0.15 0.00 0.05 0.7% ‐0.3% 0.54

p95 1.01 0.15 0.97 4.2% 0.0% 0.80

Number of issuer days: 35,635

Top quartile miss SD 0.60 0.07 0.70 3.1% ‐0.7% 0.70

AA, above 0.17 0.01 0.06 0.6% ‐0.3% 0.48

A 0.24 0.02 0.18 1.0% ‐0.3% 0.49

BBB 0.42 0.02 0.29 2.0% ‐0.5% 0.51

BB, below 0.43 0.02 0.43 2.1% ‐1.4% 0.49

Table 6: Fit and parameters when using historically‐estimated default proability as an input

This table reports results when using historically‐estimated default probability as an input and there is an

illiquidity effect on all cash flows (see text for additional detail). As before, recovery rate is constrainted to lie

between 0.1 and 0.8; the effect of illiquidity lies between 0 and ‐5%. Estimation is done minimizing the

volume‐weighted squared pricing error. All data are reported at the issuer‐day level. Mean absolute error

(MAE) is the no‐coupon recovery volume‐weighted error for a given issuer day. MAE diff is the difference

between the full‐coupon recovery and the no‐coupon recovery model MAE. Avg miss error is the average

misspecification error, Default probability is the maturity‐weighted historically‐estimated default probability

(from Kamakura Risk Information Services division of SAS Institute), Illiquidity and Recovery rate are both

fitted. In Panel B we report model fit statistics for a subsample of issuer‐day observations for the subsample

with the top 25 percent of within issuer‐day misspecification error standard deviation, as well as for four

rating groups.

Panel A: Model 3 (fitted recovery rate and illiquidity, historically‐estimated PD)

Panel B: Subsamples ‐‐ high misspecification error standard deviation, rating groups



Sample full
High Miss 

error SD
full

High Miss 

error SD
full

High Miss 

error SD

Mean 0.09 0.24 0.02 0.05 0.04 0.14

median 0.04 0.18 0.01 0.03 0.01 0.10

SD 0.23 0.43 0.14 0.27 0.17 0.31

No. of issuer days 18,708 4,677 18,708 4,677 18,708 4,677

Sample full
High Miss 

error SD
full

High Miss 

error SD
full

High Miss 

error SD

0.087*** 0.236*** 0.023*** 0.045** 0.043*** 0.143***

(0.016) (0.038) (0.006) (0.019) (0.015) (0.036)

AA, above

A

BBB

BB, below

Panel C: Average out‐of‐sample outperformance across rating subsamples

Model 1 Model 2 Model 3

Table 7: Model outperformance based on out‐of‐sample fitting

This table reports results when the three models are fit out‐of‐sample. Each issuer day, we choose one half

of the observations (based on maturity rank) for estimation and calculate out‐of‐sample prices for the other

half. The exercise is then repeated so that each issuer‐day has a full set of out‐of‐sample prices. We require a

minimum of four observations for each issuer day ensuring that parameters are calculated based on a

minimum of two prices. Panel A reports summary statistics for the full sample and for the top quartile of

misspecification error standard deviation. Panel B reports means and standard errors when regressing no‐

coupon recovery model outperformance (i.e. differences in volume weighted mean absolute errors) on a

constant, using standard errors that are robust and double clustered by issuer and date (same as in Table 5).

Panel C reports average outperformance across four rating groups.

Panel A: Out‐of‐sample outperformance of no‐coupon recovery model

Panel B: Statistical significance of average outperformance (full and subsample)

Model 1 Model 2 Model 3

Model 1 Model 2 Model 3
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