
The Valuation of Corporate Coupon Bonds∗

Jens Hilscher†, Robert A. Jarrow‡, and Donald R. van Deventer§

January 3, 2022

Abstract

This paper shows that, for a sample of corporate bond prices, credit
spreads and therefore discount rates of promised coupons and principal dif-
fer substantially. To better fit this stylized fact we propose and estimate a
tractable, arbitrage-free valuation model for corporate bonds that includes a
more realistic recovery rate process. Existing spread calculations assume that
coupons and principal have the same seniority. Thus, these spread calcula-
tions are misspecified because they include recovery rates for coupons due
after default. Misspecification errors resulting from such a coupon recovery
assumption depend on recovery rates, coupons, maturity, and default prob-
abilities and can be substantial in size. We provide two pieces of evidence
in support of the no-coupon recovery model: (i) for a large sample of bond
market transactions our model has lower pricing errors than one assuming
recovery on all coupons, and (ii) the model’s outperformance magnitude is
closely linked to model misspecification errors.

1 Introduction

Credit spreads, the difference between yields to maturity on risky debt and safe
government bonds, are commonly used both as measures of risk in bond prices
and to price those bonds. In the corporate bond literature, for example Collin-
Dufresne, Goldstein, and Martin (2001) identify drivers of variation in credit
∗Helpful comments from John Y. Campbell and seminar participants at the Bank of England,

the Bank of Finland, the Board of Governors of the Federal Reserve, the European Bank for
Reconstruction and Development, the International Monetary Fund, the World Bank, Brandeis
University, the 2019 GEA meetings at the Frankfurt School of Finance and Management, and
the University of Technology, Sydney are gratefully acknowledged. We thank Tengda Gong for
providing excellent research assistance.
†University of California, Davis, California 95616. email: jhilscher@ucdavis.edu.
‡Samuel Curtis Johnson Graduate School of Management, Cornell University, Ithaca, N.Y.

14853 and Kamakura Corporation, Honolulu, Hawaii 96815. email: raj15@cornell.edu.
§Kamakura Corporation, Honolulu, Hawaii 96815. email: dvandeventer@kamakuraco.com.

1



spreads while Campbell and Taksler (2003) and Gilchrist-Zakrajšek (2012) ex-
plore determinants of credit spreads. Other work, e.g. Elton, Gruber, Agrawal,
and Mann (2001) and Huang and Huang (2012), decompose a coupon bond’s credit
spread into its various components: the expected loss, a default risk premium, a
illiquidity risk premium, and an adjustment for the deductibility of government
bond income for state taxes.1 A second stream of the literature prices bonds or
related securities using a reduced form model (see Duffee (1999), Duffie, Pedersen,
and Singleton (2003), Driessen (2005)). A careful reading of these papers shows
that they all assume that a single credit spread or spread term structure can be
used to value risky debt.

The underlying assumption (either implicit or explicit) is that a coupon bond
is equivalent to a portfolio of risky zero-coupon bonds valued using a single spread
or spread term structure. The number of zero-coupon bonds held in the portfolio
corresponds to the promised coupons and principal with their maturities corre-
sponding to the payment dates (see expression (4) in the text). Importantly, both
promised coupons and principal payments are discounted using the same spread.
For the credit spread estimation literature, this implicit assumption follows be-
cause all promised coupons and principal are included when computing a bond’s
credit spread. In the reduced form model literature, the recovery rate process
utilized is the “recovery of market value (RMV)” due to Lando (1998) and Duffie
and Singleton (1999), which implies this result. This pricing approach assumes
that, when discounting, coupon and principal cash flows are treated the same,
and, therefore, that both promised payments entitle the holder to a recovery in
default. For subsequent discussion, we therefore call this approach the “full-coupon
recovery” model.

In this paper we first compare bond valuations discounting all cash flows in the
same way to one with different discount rates for coupons and principal. The first
has one credit spread for all cash flows, while the second allows credit spreads for
coupon and principal payments to differ. In our 120 thousand corporate coupon
bond transactions data set, we find that coupon spreads are much larger than
principal spreads. We also find that using different spreads results in much lower
pricing errors – the average root mean squared pricing error is cut more than in
half, dropping from 42 cents to 19 cents. These results provide initial evidence in
support of valuing coupon and principal cash flows differently.

As shown by Jarrow (2004), a single term structure of risky zero-coupon bonds
used for valuing coupon bonds is valid if and only if all of the risky zero-coupon
bonds are of equal seniority and all have the same recovery rate in the event of
default. However, this assumption is inconsistent with industry practice. After
default, as evidenced by financial restructurings and default proceedings, only the

1Other work explores determinants of risky debt yield spreads in the sovereign context, e.g.
Duffie, Pedersen and Singleton (2003) or Hilscher and Nosbusch (2010).
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bond’s principal becomes due, and no additional coupon payments are made on or
after the default date. This implies that coupon and principal payments cannot
be valued using the same (single) credit spread or spread term structure and that
basing a bond valuation model on this erroneous assumption of equal seniority
will produce model prices that have misspecification errors. Our empirical results
comparing using either one or two (principal and coupon) spreads imply that
market participants understand the difference in seniority between coupon and
principal payments and that this differences is reflected in market prices.

Consistent with our findings on coupon and principal spreads, industry prac-
tice has been confirmed in the recovery rate estimation literature where it has
been shown that alternative recovery rate processes,2 either the “recovery of face
value (RFV)” or the “recovery of Treasuries (RTV)” formulations, provide a better
approximation to realized recovery rates than does RMV (see Guha and Sbuelz
(2005) and Guo, Jarrow and Lin (2008)).3 And, it is also well known that both
the RFV and RTV recovery rate processes are consistent with a zero recovery on
coupons promised after default. Therefore, these recovery rate processes do not
imply the full-coupon recovery model. See Jarrow and Turnbull (2000), Longstaff,
Mithal, and Neis (2005), Bielecki and Rutkowski (2002), chapter 13, and Collin-
Dufresne and Goldstein (2001) for models with zero recovery on coupons promised
after default. However, these papers do not consider the effect of varying senior-
ity on single spread calculations or separate principal and coupon spreads; they
do not provide a comprehensive analysis of the empirical implications of different
pricing approaches for a large data set of coupon bond transaction prices, and
they do not provide a clear and easy-to-calculate measure (the misspecification
error’s standard deviation) that identifies the effect of using a misspecified coupon
recovery rate assumption on bond pricing errors.4

The purpose of this paper is to explore, both theoretically and empirically,
the magnitude of the effect on bond prices of assuming zero recovery on coupons
promised after default. In order to do so we derive an empirically tractable reduced
form bond pricing model, the form of which is new to the literature. For subsequent
discussion, we refer to our model as the “no-coupon recovery” model and the

2See Bielecki and Rutkowski (2002), Chapter 8 for a discussion of these different recovery rate
processes.

3See also Guha, Sbuelz and Tarelli (2020), who provide evidence in support of RFV when
studying high-yield bond duration.

4Bakshi, Madan and Zhang (2006) use the Lehman Bond price data set to compare different
recovery assumptions for a sample of 25 BBB-rated bonds over a nine-year period. They find
that pricing errors decline when choosing the RTV or RFV rather than RMV specification.
Our paper uses a much larger data set, demonstrates the effect on pricing of using different
spreads for principal and coupons, explores the drivers of model misspecification errors on pricing
both theoretically and empirically, and estimates the effect of illiquidity on prices. We also
provide direct evidence of prices reflecting no recovery on coupons by looking at prices of bonds
immediately after default.
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existing model as the “full-coupon recovery” model. We derive an intuitive and
straightforward-to-implement pricing formula in which model prices depend only
on the risk-free term structure, the term structure of default probabilities, and
two parameters that we estimate – the recovery rate and a parameter capturing
illiquidity. We also show that the bond can be valued using two “building block”
securities: survival digitals, which pay off only if there is no default, and default
digitals, which pay off only in the event of default. The decomposition is useful
both to build pricing intuition and for the empirical implementation. Our model
implies that, consistent with our approach of using two spreads, bond prices can
be computed using two different discount rate functions – spread curves – one for
coupons and one for principal.

We perform a calibration of the model to demonstrate that the spreads appro-
priate for discounting coupon and principal payments can be quite different. We
also calculate pricing errors of the no-coupon recovery and the full-coupon recovery
models. These are model misspecification errors, which result from the erroneous
assumption of positive recovery of coupons after default. Misspecification errors
are larger if recovery rates, default probabilities, maturity or coupon payments are
larger. For example, for a 10-year bond with a recovery rate of 40%, a coupon of
2.61%, and an annual default probability of 1%, the full-coupon recovery model
will assign a price that is $0.50 too large. If it is a 30-year bond, the price is $3.61
too large, a substantial difference relative to the correct price, which is equal to
par. We calculate exact misspecification errors and also provide an approximate
formula that can be used to estimate the misspecification error magnitudes. In
this estimate, misspecification errors are proportional to the recovery rate and the
coupon size, and they are approximately proportional to the default probability
and the square of the number of coupon payments, which results in a close relation
to maturity.

We then return to our empirical work and present direct evidence of a differ-
ence in seniority between principal and coupons. We provide three examples of
issuers that have filed for bankruptcy: Lehman Brothers, Pacific Gas and Electric
(PG&E), andWeatherford International. We use both the misspecified full-coupon
recovery and our no-coupon recovery model to price the bonds. We find that pric-
ing errors from using the full-coupon recovery model are between five and ten
times as large as the no-coupon recovery model’s pricing errors. Observed prices
are thus consistent with market participants assuming zero recovery on coupons
and they are inconsistent with the assumption of equal recovery. This analysis
provides independent evidence in support of industry pricing practice implying
zero recovery on coupons after default.

Expanding our analysis to the full data set, we perform a comparative analysis
of the no-coupon and the full-coupon recovery models. Our sample consists of
daily market prices for a collection of liquidly traded bonds over the period from
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September 2017 through January 2021. We fit both models to the data separately.
If market prices reflect zero recovery of coupons after default, the no-coupon recov-
ery model will outperform the full-coupon recovery model. Indeed, we find that, in
the full sample, the average no-coupon recovery model’s root mean squared pricing
error is 3.2 cents smaller than the full-coupon recovery model pricing error, and
that the difference is statistically significant.

Although it is useful to calculate the average outperformance, this is not par-
ticularly informative. Our model predicts that the size of the outperformance
is directly related to the size of the misspecification error – the pricing effect of
switching from assuming zero recovery of coupons to full recovery. A small average
level of outperformance may therefore simply be the result of using a sample in
which misspecification errors are small. Instead, the relevant test of our model is
whether or not the misspecification error can explain variation in the magnitude
of no-coupon recovery model outperformance. If, for example, a bond is of short
maturity with only a few coupons and with a low default probability, the two
models predict the same price (the misspecification error is close to zero) and the
no-coupon recovery model will not outperform. But, if the maturity is long and
the default probability is substantial (and zero recovery of coupons is reflected in
the data) the no-coupon recovery model’s outperformance will be large.

Our empirical approach thus proceeds in two steps. First, we calculate misspec-
ification errors and then check that the outperformance of the no-coupon recovery
model depends on them. Misspecification errors are large (in our data, 5% are
larger than $1.17). However, the median misspecification error is small; it is equal
to 2.4 cents. There are thus some bonds for which zero recovery on coupons is
highly relevant and ignoring it will result in large pricing errors, while for other
bonds the distinction is less relevant.

Second, we compare pricing errors of the two models and relate them to mis-
specification errors. This amounts to a horse race between the models, but one that
not only tests average outperformance but also tests whether our model’s predic-
tion regarding relative outperformance is present in the data. As pointed out, we
find evidence of model outperformance in the full sample. More importantly, as we
focus on higher and higher misspecification error observations, the no-coupon re-
covery model’s outperformance becomes larger. That is, outperformance is larger
when default probability and recovery rate are larger, when maturity is longer, and
when coupons are larger. In other words, our model accurately forecasts when zero
recovery of coupons is important for pricing.

Since we are pricing portfolios of bonds for each issuer day and since the
full-coupon recovery model can adjust parameters, what actually matters is not
the average level of the misspecification error but rather the within issuer day
misspecification error’s standard deviation. Regressing the difference in the full-
coupon and the no-coupon recovery models root mean squared errors (i.e. model
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outperformance) on the misspecification error standard deviation, the coefficient
is highly significant and the regression has a R2 of 57%. When focusing attention
on the top quartile of misspecification error standard deviation observations, the
pricing error difference increases from 3.2 cents for the full sample to 12 cents.
For the top decile, outperformance increases to 24 cents. Model outperformance
happens where our model predicts, providing evidence that market participants
are pricing bonds according to the no-coupon rather than the full-coupon recovery
model.

In the process of fitting the no-coupon recovery model to the data we estimate
implied recovery rates and illiquidity discounts. In a final step we show that
variation in both of these parameters track what we expect. Average recovery
rates, though a little higher, are generally in line and consistent with previous work.
Variation in the illiquidity effect we estimate has a strikingly close relationship to
the Aaa-Treasury spread, although outside of the crisis periods the illiquidity
discount is slightly smaller than the Aaa-Treasury spread. When the Covid-19
pandemic hit markets in March of 2020, both the Aaa-Treasury and our illiquidity
measure spiked (also see Kargar et al. (2021)). The close relationship between
our new measure of liquidity and the Aaa-Treasury spread, neither of which uses
the same data nor methodology to compute, provides independent validation of
our pricing model.

The outline of the paper is as follows. Section 2 presents a simple two pe-
riod model to price bonds and calculates coupon- and principal-specific spreads.
Section 3 presents the model for valuing risky coupon bonds. Section 4 discusses
the estimation procedures, and Section 5 presents some illustrative pricing results
for three companies that filed for bankruptcy. Section 6 presents a comparative
analysis of two alternative pricing models, discusses variation in model fit and
parameters over time, and shows robustness to differing model implementations.
Section 7 concludes.

2 A Simple Credit Spread Model

Our objective is to price bonds of the same issuer but with different maturities
and coupons. Short-maturity and low-coupon bonds derive value mainly from
the bond’s principal. For longer maturity and higher-coupon bonds, the present
value of coupons plays a larger role. If coupons have a zero recovery after default,
while the principal payment has a positive recovery, both cash flows will not have
the same discount rate. Using the same credit spread for both will result in an
inability to price bonds with different maturities and coupons. On the other hand
if, as the standard literature on credit spreads implicitly assumes, both have the
same seniority, one spread will suffice. A priori it is not clear if the effect we
are focusing on is empirically large or small. Spreads appropriate for discounting
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coupons and principal may be similar and pricing errors using either one or two
spreads may also be similar. We note that we are interested in pricing multiple
bonds simultaneously. It is, of course, possible to calculate a bond-specific yield
to maturity and therefore a bond specific credit spread. This, however, does not
provide a pricing methodology, but it is simply a transformation of the price into
another quantity.

2.1 A Comparison of One versus Two Credit Spreads

Before proceeding with our full model and estimation, we first examine the dif-
ference in the two pricing approaches empirically. We price bonds using either
a single spread or two spreads - one to discount coupon payments and one to
discount principal payments. When pricing a single bond, one can always find a
credit spread that will price the bond perfectly. The model may be mis-specified,
but it will nevertheless be able to fit the data. However, when pricing two or
more bonds using the same credit spread, it is possible to compare the two pricing
approaches.

Our data, which we describe in more detail in Section 4, consists of 120 thou-
sand observations from September 2017 to January 2021. The data is for 181
issuers. Table 1 Panel A reports summary statistics for the full sample. Ninety
percent of the data have ratings between BB+ and A-;5 maturities between 0.3
and 8.1 years,6 and coupons between 1.7 and 5.7 percent. The average obser-
vation comes from an issuer day with seven observations and ninety percent of
observations are from issuer-days with between two and 14 observations. The
average bond is priced in a sample that has an average maturity range of five
years, and ninety percent of observations have maturity ranges between 1.3 and
8.9 years. Our sample is therefore appropriate to study how default risky coupon
bonds should be priced.

We price bonds assuming either a single spread or two spreads, one to discount
coupons and one to discount principal payments. Specifically, we minimize the
volume weighted squared pricing errors. When a single credit spread is used, the
average spread is equal to 100 basis points, while the median is equal to 75 bps.
If instead we use two spreads, the mean principal spread is equal to 54 bps, while
the mean coupon spread is 746 bps. The market, therefore, uses substantially
higher discount rates for coupons than it does for principal payments. This finding
supports the idea that principal payments are safer because they deliver potentially
large recovery values in the event of default. Coupon payments, in contrast, do

5The sample consists primarily of investment grade bonds since many high yield bonds have
call features, all of which are excluded. An analysis of callable bonds goes beyond the scope of
this paper.

6Our main model implementation is based on default probabilities that extend to a maturity
of ten years, and so we restrict attention to observations with that maximum maturity.
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Table 1: Summary Statistics, Credit Spreads, Implied Default Probabilities and
Recovery Rates
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not pay off in default and therefore need a larger discount rate.
Table 1 Panel B reports statistics measuring model fit. The average root mean

squared error when using a single spread for principal and coupons is equal to
0.42. If we use different spreads for principal and coupons, the RMSE drops
by more than one half to 0.19. The difference is even larger when looking at
median pricing errors which drop from 0.34 to 0.1 when using two spreads. The
pattern is also reflected in the volume weighted R2 measures.7 The median R2

for the single spread model is 95% while it is 99% for the two spread model. The
mean R2 is 84% for the single spread model and 96% for the model allowing for
principal and coupon spreads. We check that this difference is not driven by some
issuer days with two observations that may be able to be fit perfectly using the
two spread model (the model is nonlinear and so a perfect fit is not guaranteed).
When restricting attention to issuer days with at least five bonds, the model fit
as measured by R2 increases and is equal to 88% on average for the single spread
model and 97% for the two spread model. The mean root mean squared error for
the two approaches are slightly larger and equal to 0.53 and 0.26, respectively. As
an additional check we estimated spreads at the monthly rather than the daily
level. This allows for much larger groups of observations, making it less likely that
there are only very few observations priced for a given spread. Our results are
robust to this change.

2.2 Implied Default Probabilities and Recovery Rates in a Two
Period Model

In this section we introduce a two period model that reflects the different seniority
of principal and coupons. This model allows us to identify the default probability
separately from the recovery value. The intuition underlying the more general
model can be seen in this two period model, and it enables us to take a closer look
at the principal and coupon spread data.

Assume that a bond pays back both the coupon and principal next period.
If default occurs before maturity, the bond pays a fractional recovery value of
principal and the coupon has a zero recovery. The appropriate discount rates and
spreads for the two promised cash flows can be found by pricing two building
block securities. The first is a survival digital that pays one dollar next period
if no default has occurred, with value C. The second is a default digital that
pays one dollar next period if default occurs, with value R. Since the results are
mutually exclusive and exhaustive, a portfolio of both securities pays one dollar
next period for sure.

7Using two spreads allows the model one additional degree of freedom. To take this into
account we have also
calculated adjusted R2’s (unreported) which result in the same pattern.
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For simplicity, and for the purposes of this example only, we assume a zero
risk-free interest rate, frictionless markets, and no-arbitrage. No arbitrage implies
the existence of risk neutral probabilities that can be used for valuation. Let Q be
the risk neutral probability of default. Then C + R = 1 and C = (1−Q), which
is the risk neutral probability of survival. Note that the value only depends on
the default probability.

Now, the bond’s value V = C +R ∗ (recovery rate) because this corresponds
to its payoffs next period in terms of the two digital securities and a recovery
rate. The appropriate discount rate to be used for principal payments, therefore,
depends on the recovery rate. Using the two digitals, we can rewrite the bond’s
value as V = (1 − Q) + Q ∗ (recovery rate), enabling us to calculate the default
probabilities implied by the coupon spreads and the recovery values implied by
principal spreads.

Table 1 Panel A reports these results. Median implied probabilities are equal
to 6.0%. Median implied recovery rates are equal to 94%. The very large recovery
rates result from the large difference in coupon and principal spreads (for a recovery
rate of zero, the two spreads are the same). We note that default probabilities
implied using this simple, stylized approach are very high. Later, when we estimate
the full model we introduce an illiquidity discount which captures the effect of
corporate bonds trading at lower prices due to trading frictions. Our simple model
in this section does not allow for such an effect, likely resulting in artificially high
implied default probabilities. Similarly, implied recovery rates are higher than
what previous studies have found (Jankowitsch, Nagler, Subramanyam (2014)).
Nevertheless, the spread-implied default probabilities and recovery values show
that the market expects high recovery values and that bonds generally trade below
their frictionless value, supporting the introduction of an illiquidity discount.

We next discuss our full model. When estimating the full model, instead of
using bond price data to back out the implied default probabilities, we use inde-
pendent estimates of the default probabilities. And, we also relax the assumption
of frictionless markets and estimate an illiquidity discount.

3 The Pricing Model

This section presents the pricing model, which is based on the reduced form model
of Jarrow and Turnbull (1995).8 To streamline the exposition, the details of the
mathematical formulation are contained in the appendix. We assume that traded
in the economy are default-free zero-coupon bonds of all maturities, a default-
free money market account, and a risky coupon bond (to be described later).
The market is assumed to be frictionless and competitive. Both the frictionless

8We note that Jarrow and Turnbull (2000) contains a reduced form model with zero recoveries
paid on coupons due after default.
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and competitive market assumptions are relaxed, subsequently, when we add a
illiquidity discount to the valuation formula (see expression (11) below).

The default-free money market account earns interest continuously at the
default-free spot rate of interest, rt. The money market account’s time t value
is denoted by

Bt = e
∫ t
0 rsds (1)

with B0 = 1. We let the time t value of a default-free zero-coupon bond paying a
dollar at time T be strictly positive and denoted by p(t, T ) > 0.

We consider a firm that issues a bond with a coupon of C dollars, a face value
equal to L dollars, and a maturity date T . The bond pays the C dollar coupons
at intermediate dates {t1, ..., tm = T}, but only up to the default time τ . For
notational convenience, let the current time t = t0. If default happens in the time
interval (tk−1, tk], then the bond pays a stochastic recovery rate of δtk ∈ [0, 1] at
time tk on the notional of L dollars.9 It is important to note that default can
happen anytime within this interval, but the payment only occurs at the end. If
default does not happen, the face value of L dollars is repaid at time T .

3.1 Risk Neutral Valuation

To value the risky coupon bond, we assume (i) that the markets for both the
default-free coupon bonds and the risky coupon bond are arbitrage-free and (ii)
that enough credit derivatives trade on the risky firm so that the enlarged market
is complete (see Jacod and Protter (2010) for a set of sufficient conditions on an
incomplete market such that the expanded market is complete). Given the trading
of credit default swaps, this is a reasonable approximation.

Under these assumptions, by the second fundamental theorem of asset pricing
(see Jarrow and Protter (2008)), risk-neutral valuation applies. Denote the time
t ≤ t1 value of the coupon bond as vt, then

vt =
∑m

k=1CE
Q
[
1{τ>tk}e

−
∫ tk
t rudu |Ft

]
+ LEQ

[
1{τ>T}e

−
∫ T
t rudu |Ft

]
+
∑m

k=1 LE
Q
[
1{tk−1<τ≤tk≤T}δtke

−
∫ tk
t rudu |Ft

] (2)

where Q denotes the risk-neutral probabilities.
This formula reflects the expected discounted value of the random cash flows

to the risky coupon bond using the risk-neutral probabilities Q. The discount
9In practice, a portion of the next coupon payment after default represents some accrued

interest, earned, but not yet paid. This accrued interest has a recovery rate associated with
it. With a slight loss of generality we exclude this accrued interest payment in the stochastic
recovery rate δtk defined above. We appreciate the comments from a law firm, Morrison &
Foerster, in this regard.
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rate is the default-free spot rate rt. The adjustment for risk is via the use of the
risk-neutral probabilities, instead of the statistical probabilities.

The cash flows correspond to the coupon payments C1{τ>tk} for k = 1, . . . ,m
and the principal L1{τ>T}, but only if no default occurs prior to the payment
date. A recovery payment on the principal is made in the event that default
occurs within the time interval (tk−1, tk], 1{tk−1<τ≤tk≤T}δtkL, summed across all
the intervals over the bond’s life. Note that no recovery payments are included for
any coupon payments occurring after the default date.

To facilitate analytic tractability, and with a minor loss of generality, we assume
that the default-free spot rate rt, the default time τ , and the recovery rate process
δt are independent under Q given the information at time t that doesn’t depend on
the histories of these three processes. This is a weak assumption on the evolutions
of the default-free spot rate, the default time, and the recovery rate because it
imposes very little structure on their evolutions under the statistical probabilities.

Under the statistical probabilities, these processes need not be independent.
Hence, nonzero pairwise correlations between the observed default-free spot rate,
the default time, and the recovery rate processes, which are realizations under
the statistical probabilities, are not excluded by this assumption. And, it is well
known that non-zero correlations across the default-free spot rate, default times,
and recovery rates have been observed in historical data.

Using the independence assumption, equation (2) simplifies to

vt = Lp(t, T ) [1−Q(t, T )] + (C − Ldt)
∑m

k=1 p(t, tk) [1−Q(t, tk)]
+Ldt

∑m
k=1 p(t, tk) [1−Q(t, tk−1)]

(3)

where
dt = EQ [δτ |Ft ]

is the time t futures price for a contract receiving the recovery rate at time T ∗ (see
the appendix for the details) and Q(t, ti) = ProbQ [τ ≤ ti |Ft ] is the risk neutral
probability of default before ti. We refer to this price as the “no-coupon recovery”
model to emphasize that it captures no recovery on coupons after default. We
call dt the recovery rate futures price. It is the relevant measure that results in
value today derived from future fractional recovery of principal, and it is what we
estimate in our empirical work. As shown in the appendix, it is expected to be
slightly larger than the recovery rate if paid at time t, δt.

In this form it is easy to see that the value of this coupon bond is not equal to
the sum of the coupons and principal times the value of a collection of zero-coupon
bonds from a single risky term structure that pay the fractional recovery rate in
the event of default. Let D(t, tk) denote the time t value of such a risky zero-
coupon bond promising to pay a dollar at time tk for k = 1, . . . ,m with recovery
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rate δt in default. Then,

vfull coupont =
∑m

k=1CD(t, tk) + LD(t, T ) =
Lp(t, T ) [1−Q(t, T )] + (C − Ldt)

∑m
k=1 p(t, tk) [1−Q(t, tk)]

+Ldt
∑m

k=1 p(t, tk) [1−Q(t, tk−1)]
+
∑m

k=1C(m+ 1− k)dtp(t, tk)[Q(t, tk)−Q(t, tk−1)].

(4)

This expression is called the “full-coupon recovery model.” As pointed out in the
introduction, the RMV recovery rate assumption is a sufficient condition for this
pricing model. The difference between this model and ours is that expression (4)
contains terms omitted in expression (3). The additional terms in expression (4)
are the recovery values for the coupons that would have been paid after the default
date, i.e.

∑m
k=1C(m + 1 − k)dtp(t, tk)[Q(t, tk) − Q(t, tk−1)].10 These terms are

included because all cash flows are discounted using a single risky term structure
of zero-coupon bonds. We note that, given the different seniorities of the principal
and coupons, we anticipate the no-coupon recovery model to outperform the full-
coupon recovery model when simultaneously pricing more than one bond. If one
instead assigns different recovery rates to different bonds of the same firm traded
on the same day, the pricing method extends. However such an assumption is in
direct contradiction to industry practice, which is to pay the same recovery rate
on equal seniority bonds (see Section 5).

3.2 Survival and Default Digital Securities

To simplify expression (4), we introduce two simple credit derivatives: a survival
and default digital. These building block securities provide additional intuition and
insight to our pricing approach and were first discussed in the literature by Madan
and Udal (1998). These securities are generalized versions of those discussed in
Section 2.

At time t, consider the time interval [tk−1, tk] for k = 0, . . . ,m.11 We define a
survival and a default digital as follows

• (A Survival Digital) This security pays $1 at time tk only if default occurs
after tk. The value of this security at time t < tk is

z(t, tk) = EQ
[
1{τ>tk}e

−
∫ tk
t rudu |Ft

]
. (5)

• (A Default Digital) This security pays $1 at time tk if default occurs within
(tk−1, tk]. The value of this security at time t < tk is

x(t, tk) = EQ
[
1{tk−1<τ≤tk}e

−
∫ tk
s rudu |Ft

]
. (6)

10This term follows because if default occurs during the time interval (tk−1, tk], the remaining
future coupons are

∑m
j=k C = (m + 1 − k)C. In the full coupon recovery model, one gets a

recovery payment on all the remaining coupons.
11Note that when k = m, tm = T .
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Using the conditional independence assumption, we can write these as

z(t, tk) = p(t, tk)[1−Q(t, tk)] (7)

and
x(t, tk) = p(t, tk)[Q(t, tk+1)−Q(t, tk)]. (8)

The identity 1{tk−1<τ} = 1{tk−1<τ≤tk} + 1{τ>tk} implies that12

p(t, tk)[1−Q(t, tk−1)] = x(t, tk) + z(t, tk). (9)

The left side represents the present value of the tk maturity zero-coupon bond at
time t, which is received only if there is no default before or at time tk−1. The
right side is the present value of the default digital for the interval (tk−1, tk] and
the survival digital with maturity tk. This valuation relationship corresponds to
the discussion in Section 2.1, where we noted that a portfolio of a default and
survival digital with maturities one period into the future pay $1 for sure.

Using these two digitals, expression (3) can be written as

vt =
∑m

k=1Cz(t, tk) + Lz(t, T )
+Ldt

∑m
k=1 x(t, tk). (10)

This expression shows that a risky coupon bond can always be decomposed into
a portfolio of survival and default digitals.13

3.3 An Illiquidity Discount

Corporate bond markets are illiquid relative to Treasury bonds or exchange traded
equities. This illiquidity implies that corporate bond prices may reflect an illiquid-
ity discount (see Jarrow and Turnbull (1997), Duffie and Singleton (1999), Cherian,
Jacquier, and Jarrow (2004)). Note also the preliminary evidence discussed in Sec-
tion 2 supporting the presence of such a discount. An illiquidity discount modifies
the previous valuation formula to implicitly incorporate the impact on pricing due
to transaction costs and trading constraints.

12Indeed,
EQ

[
1{tk−1<τ}e

−
∫ tk
s rudu |Ft

]
= EQ

[
1{τ≤tk}e

−
∫ tk
s rudu |Ft

]
+EQ

[
1{τ>tk}e

−
∫ tk
s rudu |Ft

]
,

which simplifies to the given expression.
13We note that the valuation of corporate coupon bonds is only one example of the advantages

of pricing using these building block securities. Other securities that depend on default, e.g.
CDS contracts, sovereign bonds, and “bail in” bonds can also be priced using the building block
securities as well.
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It is important to note that transactions costs (including bid/ask spreads)
are a special case of an illiquidity cost paid when trading, which are implicitly
included via an illiquidity discount (see Cetin, Jarrow and Protter (2004) for the
theoretical justification of this statement). Similarly, taxes paid on coupons and
capital gains can also be interpreted as a type of transaction cost, and hence they
too are implicitly included in the illiquidity discount as well.14

We apply the illiquidity discount function eαt(T−t) symmetrically to all the
cash flows promised to the coupon bond. This symmetry enables similar illiquidity
discount impacts across different coupon bonds issued by the same credit entity.
Given this, we can rewrite the coupon bond’s value as

vliqt =
∑m

k=1Cz(t, tk)e
αt(tk−t) + Lz(t, T )eαt(T−t)

+Ldt
∑m

k=1 x(t, tk)e
αt(tk−t). (11)

It is important to emphasize that in the subsequent estimation, both the recov-
ery rate dt and the illiquidity parameter αt are stochastic, hence, they can vary
randomly across time due to changing market conditions. Our estimation pro-
cedure allows for these estimated parameter values to reflect this randomness.15

Expression (11) is the valuation model estimated in the next section.

3.4 Comparative Statics - Misspecification Errors

This section builds intuition for misspecification errors when using the full-coupon
recovery model, expression (4) instead of the no-coupon recovery model, expression
(3). Recall that the misspecification error, the difference between the full-coupon
and no-coupon recovery model prices, is equal to

∑m
k=1C(m+1−k)dtp(t, tk)[Q(t, tk)−

Q(t, tk−1)]. Note that these misspecification errors are always positive.
We next quantify the magnitudes of these misspecification errors and we pro-

vide a simple approximation that allows us to relate the misspecification errors
to the model’s inputs. Later, we relate the predicted misspecification errors to
patterns in the data.

14The complication of explicitly including illiquidity costs (transaction, taxes) into the model
is that different traders face different taxes and transaction costs based on their trading activities.
Consequently, to determine a market price, an equilibrium model is needed. Equilibrium models
are notoriously ladened with unrealistic assumptions. Furthermore, an argument can be made
that the marginal trader, who determines the market price, is the lowest illiquidity cost trader.
Here, we note that many institutions pay small transaction costs and there do exist non-taxable
institutions that purchase corporate debt.

15We use implicit estimation at a fixed time t allowing αt to depend on the information available
at time t.
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Misspecification Error Determinants

For illustrative purposes we make the following simplifying assumptions: (1)
coupon bonds are priced on coupon dates, (2) the risk-free term structure of
interest rates and the term structure of default probabilities are flat,16 (3) the
coupon is set so that the no-coupon recovery model’s bond price is equal to par,
and (4) that there is no illiquidity discount (αt = 0), though we relax this last as-
sumption when we consider the effect of model parameters on spreads later in this
section. Combined, these imply that the misspecification error is fully determined
by the bond’s maturity, the issuer’s default probability, the recovery rate, and the
risk-free rate.

Table 2 reports misspecification errors for the different inputs, assuming that
the risk-free term structure is flat at 2%. The par value of the bond is set to 100.
As expected, misspecification errors increase with the bond’s maturity, the issuer’s
default probability, and the recovery rate. For short maturity 2-year bonds, the
misspecification errors are less than 0.10, while the misspecification errors are equal
to or above 0.50 for the 10-year bonds. For 30-year bonds the misspecification
errors are all larger than 3.61. The largest misspecification error is equal to 12.32
for a 30-year bond with a default probability of 2% and a recovery rate of 80%.

The misspecification errors, which represents the present value of the recovery
on all of the coupon payments after default, depend on the default probability, the
recovery rate, the coupon payment, and the bond’s maturity. For the first coupon
payment the present value of the payoff in the event of default is equal to the
discounted value of the product of the coupon rate, the recovery value, and the
probability of default, i.e. Cdtp(t, t1)Q(t, t1). For the second coupon, default can
occur either in the first or in the second period. The present value of the payoff
in period one is the same as for the first coupon. The conditional expectation
at time one of the payoff in period two is also the same as for the first coupon.
However, this payment still needs to be discounted back to time zero and adjusted
to take into account that the firm must have survived to period one. For longer
time periods, a similar logic applies. This implies that the misspecification error is
exactly proportional to the product of the coupon payment and the recovery value.
In contrast, the total misspecification error is only approximately proportional to
the error resulting from the first coupon. The reason is that the probability of
survival depends on the default probability and because payments farther into the
future will be discounted by a larger amount.

Next we consider the effect of the bond’s maturity or, equivalently, the number
of coupon payments. Ignoring discounting and the adjustment for the probability
of survival, the expected recovery payment from the second coupon is twice as large
as for the first coupon. The reason is that default on the second coupon can happen

16The assumption of a flat term structure is for illustrative purposes only. In the empirical
implementation we use a term structure of default probabilities, which is not assumed to be flat.
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Table 2: Misspecification Error Determinants
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either in the first or the second period. For a bond receiving m coupon payments
the factor is therefore m(m+ 1)/2. This means that the approximate total error
is equal to Cdtp(t, t1)Q(t, t1)m(m + 1)/2. We later use this approximate error
to identify portfolios of bonds that are likely to be mispriced by the full-coupon
recovery model.

To summarize, the misspecification error is zero if the recovery rate, the default
probability, or the coupon payment is zero. The error grows approximately with
the square of the number of coupon payments and is exactly proportional to the
product of the coupon payment and the recovery rate. Thus, bonds with significant
recovery values, default probabilities, and with intermediate to long maturities will
have significant misspecification errors.

Pricing with Two Credit Spread Curves

Pricing bonds with a single credit spread term structure is based on the incor-
rect assumption that coupons and principal have the same recovery. However, as
pointed out in Section 2, this means that bonds should be priced using two spread
curves, one for discounting coupons and one for discounting the principal. If there
is a misspecification error using this full-coupon recovery model to price bonds,
then the two curves will be different.

Table 3 provides some illustrative examples of credit spread curves. We use the
same methodology as before to illustrate these spreads, varying recovery rates and
default probabilities as in the previous table. The only difference is that here we
introduce the effect of the illiquidity discount. Panel A reports principal spreads,
Panel B reports coupon spreads. As long as there is a positive recovery, coupon
spreads lie above principal spreads since the latter will be worth more and thus
are discounted less. The difference between coupon and principal spreads is close
to the product of the default probability and the recovery rate, which follows from
the misspecification error relation given above, where, for the first coupon, the
misspecification error is equal to Cdtp(t, t1)Q(t, t1). A larger default probability
makes all spreads higher. If there is no illiquidity discount, coupon spreads are
approximately equal to the default probability, and since differences relative to
principal spreads depend on the default probability, frictionless spreads are ap-
proximately proportional to the default probability. The effect of the illiquidity
discount is seen to be symmetric, affecting all cash flows equally. Indeed, both
credit spreads increase by the amount of the illiquidity discount.

It is useful to note that the standard spread calculation, which assumes equal
seniority of principal and coupons, will result in a spread that cannot be used
to discount either cash flows with zero or positive recovery. For the former (the
coupons), the spread will be too low and for the latter (the principal) it will be
too high. Thus, using a single spread (or spread curve) to price a new bond with
a different maturity or coupon will result in misspecification errors. In addition,
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Table 3: Illustrative Credit Spread Curves
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using this ‘standard’ spread calculation to assess the market’s implied risk pricing
is not possible.

4 Data and Estimation

The details of the estimation procedures are as follows. To fit the valuation model
to market prices, we obtained traded coupon bond prices for the 850 trading days
between September 2017 and January 2021 using the TRACE system. The price
in the TRACE system does not represent the full amount paid for the bond.
The full amount paid is the price plus accrued interest. We compare the full
amount paid (the present value of the bond purchase) with the valuation model in
expression (11). For each firm, we eliminated from the sample any subordinated
bonds, callable and putable bonds, structured bonds, bonds with “death puts” or
a “survivor option,” and floating rate bonds. Survivor option bonds distort bond
prices both because they are issued in small amounts (typically $20 million or
less per tranche) and because the value of the embedded put option is significant.
The survivor option feature has become more common in recent years.17 Finally,
to be included in our sample, the bond issue’s daily trade volume had to exceed
$50,000 (in almost every case, volume was much larger) and with at least two
bonds traded.18 We also exclude some bonds of European issuers subject to a
2014 EU regulation allowing regulators to demand an exchange of senior debt
securities into equity. Because data assembly and cleaning costs are substantial,19

17The largest issuers of survivor option bonds as of 2016 included General Electric, Goldman
Sachs, Bank of America, Wells Fargo, Ford Motor, HSBC Holdings, National Rural Utilities
Cooperative Finance Corporation, Dow Chemical, Prospect Capital, and Barclays PLC. A typ-
ical survivor option bond’s terms are described as follows in a recent prospectus supplement
from General Electric Capital Corporation: “Specific notes may contain a provision permitting
the optional repayment of those notes prior to stated maturity, if requested by the authorized
representative of the beneficial owner of those notes, following the death of the beneficial owner
of the notes, so long as the notes were owned by the beneficial owner or his or her estate at
least six months prior to the request. This feature is referred to as a ‘Survivor’s Option.’ Your
notes will not be repaid in this manner unless the pricing supplement for your notes provides
for the Survivor’s Option. The right to exercise the Survivor’s Option is subject to limits set by
us on (1) the permitted dollar amount of total exercises by all holders of notes in any calendar
year, and (2) the permitted dollar amount of an individual exercise by a holder of a note in any
calendar year.”

18To ensure model convergence, for issuer-days with only two observations we also require that
the maturities are more than 270 days apart.

19It is necessary to screen out callables and survivor options, data on which is only available
in the pricing supplement. The SEC and FINRA do not maintain public access to prospec-
tus data for more than about 5 years in easily accessible form. Thus including, for example,
data from the financial crisis is not feasible. In addition, the TABB group finds a very high
frequency of errors “TABB Group analysis shows reconciliation differences in more than 20%
of new issues.” (http://www.finregalert.com/an-sec-mandated-corporate-bond-data-monopoly-
will-not-help-quality/). There are also non–trivial computational costs.
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we restrict our attention to this sample. After the restrictions discussed above our
sample consists of 120 thousand observations for 172 issuers.

We use the U.S. Treasury yields reported daily by the U.S. Department of
the Treasury20 and derive the maximum smoothness Treasury forward rate curves
from these data (see Adams and van Deventer (1994)). Using these historical
forward rate curves, we compute the term structure of default-free zero coupon
bond prices on all dates.

Lastly, to facilitate the estimation of the intensity process, we assume that the
default time τ corresponds to the first jump time of a Cox process with intensity
λt = λt(Γt) ≥ 0 where Γt = (Γ1(t), . . . ,Γm(t))′ ∈ Rm are a collection of stochastic
processes characterizing the state of the firm and the market at time t. In addition,
we assume that default risk is diversifiable in the sense of Jarrow, Lando, and Yu
(2005).21 This assumption enables the estimation of the default intensities using
historical time series data, without the need to adjust the intensity process for a
default jump risk premium.

In conjunction, these two assumptions imply that we can estimate the default
probabilities using a proportional hazard rate model (see Fleming and Harrington
(1991), p. 126), i.e.

λt(Γt) = θeφΓt

where θ is a constant and where φ is a vector of constants. For an application of
such a hazard rate model applied to corporate default probabilities see Chava and
Jarrow (2004).

As discussed in Jarrow, Lando, and Yu (2005), this assumption does not imply
that risky coupon bonds earn no risk premium. Quite the contrary. If the state
variables Γt driving the default process represent systematic risk, which is the most
likely case, then risky coupon bond prices necessarily earn a risk premium due to
the bond price’s correlation to Γt. The diversifiable risk assumption just states
that the timing of the default event itself, after conditioning on Γt, is diversifiable
in a large portfolio. Alternatively stated, in a poor economy all firms are more
likely to default. But, the timing of which firms actually default depends on the
idiosyncratic risks of the firm’s management and operations.

The default process parameters (θ, φ) from the proportional hazard rate model
were provided by the Kamakura Risk Information Services division of Kamakura
Corporation.22 Kamakura uses a refinement of the approach employed by Chava
and Jarrow (2004) to estimate these parameters that are then used to construct
the full term structure of cumulative default probabilities.23 Specifically, for each
issuer-day we calculate cumulative default probabilities from the 10-year term

20https://www.treasury.gov/resource-center/data-chart-center/interest-
rates/Pages/TextView.aspx?data=yield

21For additional detail, see the appendix.
22See www.kamakuraco.com.
23The model underlying the default probability calculations is similar to the one used in Camp-
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structure of monthly marginal default probabilities (the monthly probability of
default conditional on no prior default) that Kamakura generates from separate
maturity-specific models. The state variables used in the Kamakura hazard rate
estimation include both firm specific and macroeconomic variables. Importantly,
the default probabilities do not use traded bond or CDS prices as inputs. Default
probabilities are therefore separate inputs relative to the observed bond prices that
we fit using our model.24

Given the zero coupon bond prices and the default process (above), we estimate
the recovery rate futures price dt and illiquidity discount factor αt for each issuer
on each day. We compare the model values (expression (11)) to the market prices
using a non-linear least squares estimation, calculated on a volume-weighted basis,
to solve for the best fitting values of (dt, αt). We restrict the recovery rate futures
price to lie between zero and 0.8 and the illiquidity discount to lie between zero
and -5%. Doing so will reduce the influence of observed bond price errors on the
estimates. We check that our results are robust to relaxing these restrictions (and
discuss the results together with other robustness checks in Section 6.3).

5 Illustrations: Coupon and Principal Seniority in De-
fault

Before moving to the full sample estimation, this section provides evidence that
market participants are aware of the difference in seniority between principal
and coupons in default. We consider three companies that filed for bankruptcy:
Lehman, PG&E, and Weatherford International. Lehman is chosen because of
the size and importance of its bankruptcy. The latter two firms are in our sam-
ple because each firm has a sufficient number of bonds traded. In each case we
focus on senior bonds, including callable bonds, because on the day bankruptcy is
announced the call option is worthless and can be ignored. We fit the no-coupon
recovery and full-coupon recovery models to the data. The key reason for ana-
lyzing issuer bonds after they file for bankruptcy is that the default probability
equals 100%. The recovery amount for the no-coupon recovery model is the recov-
ery rate times the notional of $100 (par value) for each of the bonds. The recovery
amount for the full-coupon recovery model is $100 plus the dollar coupon times
the number of remaining payments on each bond, a different amount for each is-
sue. For each issuer day and for both of the models, we run the regression NPV

bell, Hilscher and Szilagyi (2008, 2011), who extend Chava and Jarrow (2004) and Shumway
(2001). Campbell et al. show that the default probability measure is a more accurate predictor
of failure than Moody’s EDF numbers, data that have been widely used in academic studies, e.g.
Berndt, Douglas, Duffie and Ferguson (2018).

24It is possible to amend our model so that implied default probabilities can be estimated
based on observed bond prices. We discuss the robustness of our results to such a change in
Section 6.3.
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Figure 1: Lehman Brothers Pricing Errors

= (delta)(notional recovery amount) to derive the recovery rate and the present
values (price plus accrued interest) for each bond.

Figures 1-3 depict the pricing errors. We order the bonds by maturity. Pricing
errors when using the no-coupon recovery model (in blue) are substantially lower
than those resulting from the full-coupon recovery model (in red). Mean absolute
errors are more than five times as large for Lehman (2.0 vs. 11.0) and almost ten
times as large for PG&E (2.1 vs. 19.7) and Weatherford International (2.6 vs.
21.0). Running regressions of actual versus predicted prices, for all three firms
the R2 ’s are larger than 99% for the no-coupon recovery model. When using the
full-coupon recovery model, the R2 ’s are between 84% and 92%.

The full-coupon recovery model results in prices that are too large, especially
for bonds of longer maturities that have more coupons, which, if they were of equal
seniority, would entitle the bond holder to a recovery value. However, in default
those coupons are worthless and so any coupon paying bond would have pricing
errors that are positive as long as the model was using unbiased inputs. However,
in an attempt to fit the data, the model tries to reduce the average pricing error
resulting in bonds with short maturities being underpriced and bonds with long
maturities being overpriced. The maximum errors lie between 19.6 and 37.4. It is
worth noting that average market prices are equal to 32.4 (Lehman), 78.2 (PG&E),
and 65.0 (Weatherford International) so that the maximum errors are around one
half the market price. The (negative) minimum errors are similar in size lying
between -37.2 and -14.2. In contrast, the no-coupon recovery model’s maximum
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Figure 2: Pacific Gas & Electric Pricing Errors

Figure 3: Weatherford International Pricing Errors
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and minimum pricing errors are much smaller. They lie between 3.9 and 9.1
and -5 and -2.7, and so are approximately one quarter of the full-coupon recovery
model pricing errors. Importantly, and in direct support of the no-coupon recovery
model, its pricing errors have no clear pattern relative to the bond’s maturity.

To summarize, Lehman, PG&E and Weatherford International’s bond prices
provide direct evidence in support of the no-coupon relative to the full-coupon
recovery model. Failing to take into account the different seniority of coupons and
principal results in substantial pricing errors, which have a predictable pattern
consistent with our model.

6 Comparing the Two Pricing Models

This section provides a comparative analysis of the no-coupon and full-coupon
recovery models.25 The full-coupon recovery model produces different prices only
if misspecification errors (see section 3.4) are non-zero. We therefore investigate
both if the no-coupon recovery model has better fit on average, but also if it has
better fit when misspecification errors are larger. Both of these predictions are
implications of our model. If bonds are priced according to the no-coupon recovery
model, then a necessary condition for model outperformance is the presence of
misspecification errors.

Table 4 reports summary statistics of model parameters and model fit. The
median default probability used as an input to the model is 0.8% and the mean is
equal to 1.4%. We estimate the mean recovery rate futures price as 47%, and the
mean illiquidity parameter as -0.4%. It is useful to note that both the recovery
rate futures price and illiquidity estimates are reasonable. This is, of course, not
guaranteed given that our estimates are based purely on traded bond prices and
our no-coupon recovery model. Jankowitsch, Nagler, and Subrahmanyam (2014)
report an average recovery rate value of 0.38. Since our recovery rate is the recov-
ery rate futures price, as shown in the appendix, it is expected that our estimate
should be slightly larger than these estimates. At the same time, our estimated
0.26% (median) and 0.44% (mean) illiquidity discount, though somewhat lower,
are broadly consistent with, for example, the spread between Aaa-rated corpo-
rate bonds and Treasury debt. In section 6.2 we discuss variation in estimated
illiquidity over time and note that it also spikes in March of 2020, similar to the
Aaa-Treasury spread.

25In a previous version of the paper we also compared the no-coupon recovery model to one
based on ratings. In that model coupons are assumed to have full recovery and the credit spread
is assumed to depend only on the rating. The ratings-based valuation model is consistent with
numerous pronouncements from the Basel Committee on Banking Supervision (2010, 2017). It
performs poorly primarily because of the erroneous assumption that all firms that have the same
rating have the same risk; analyzing it is therefore less relevant when comparing no-coupon and
full-coupon recovery models.
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Table 4: Model Parameters and Fit
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Compared to the implied recovery rates from the simple model in Section 2,
recovery rates in the no-coupon recovery model are lower. This is partly a result
of imposing an upper bound on recovery values of 0.8 but it is mainly due to the
inclusion of an illiquidity discount that can capture frictions; empirically we see
an important role for such a discount.

Misspecification Errors

Before comparing the no-coupon and full-coupon recovery model pricing errors,
we analyze the misspecification errors. Using the unbiased estimates from the no-
coupon recovery model as inputs, the misspecification error is computed as the dif-
ference in prices using the full-coupon recovery instead of the no-coupon recovery
model. The full-coupon recovery model can only exhibit a worse fit if misspecifica-
tion errors are present. If they are zero, the two models are the same. Recall that
the misspecification error is approximately equal to Cdtp(t, t1)Q(t, t1)m(m+1)/2.
This approximation is quite accurate in capturing any variation in misspecification
errors. When we regress actual on predicted misspecification errors, the coefficient
is close to one and the R2 is 97%. As seen, the misspecification error approxima-
tion formula is multiplicative in coupon rate, recovery rate, default probability
and maturity. From the summary statistics of those four (reported in Tables 1
and 4) we already know that there will be a substantial fraction of the sample for
which the misspecification errors are small.

Table 4 Panel A shows that the median misspecification error is 2.4 cents.
Thus, as expected, half of our data set is not greatly affected by the pricing
differences between the two models. However, the mean misspecification error is
almost ten times as large and equal to 23 cents, and so there are many bonds for
which there are large differences in the prices implied by the two models. The 95th
percentile of the misspecification error distribution is 1.17, which is substantial,
and the 75th percentile (unreported) is 0.17, which also quite large. The median
observed bond price is equal to 102.32. As a result, these numbers are directly
comparable to those in Table 1 of Section 3.4.26

6.1 Model Performance

As noted previously, if bonds are priced according to the no-coupon recovery
model and not the full-coupon recovery model, this has two implications. First, in
a sample of bonds that have large default risk, we should detect that the no-coupon
recovery model has a better fit. Second, the outperformance will be larger when

26Of course, when estimating the models separately, which is what we do next, the full-coupon
recovery model may adjust parameters. As we saw in Section 5 when discussing the bond prices
of defaulted companies, an incorrect model not only produce biased parameter estimates, but its
fit is also worse.
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the two models disagree by more (i.e. when the misspecification errors are larger
and more variable). We provide evidence supporting both of these implications
below. We note that there is nothing mechanical about the relation between mis-
specification errors and model outperformance. If the data were priced according
to the full-coupon recovery model, we would find that that model outperforms the
no-coupon recovery model, and that it does so by more when the misspecification
errors are larger.

We compare the two models after fitting them independently to the data.
For each issuer-day, we estimate both the no-coupon and full-coupon recovery
models and calculate the volume-weighted root mean squared errors andR2. These
average error statistics are reported in Table 4 Panel B.

As expected, we find that the pricing errors are smaller for the no-coupon
recovery model (35.4 cents) as compared to the full-coupon recovery model (38.5
cents). However, also as expected, there are many observations for which the
error difference is not that large. We see this by comparing the median error,
equal to 18.6 cents (no-coupon recovery) and 19.2 cents (full-coupon recovery). In
fact, when calculating the error difference, the median is almost equal to zero (0.1
cents). This is a direct result of analyzing the full sample of transactions, one that
includes many observations for which we know a priori that model differences are
small (misspecification errors are close to zero) and therefore pricing differences
will be near zero. The same pattern is present when analyzing the R2 for the
two models. The mean R2s are equal to 88.5% (no-coupon recovery) and 87.2%
(full-coupon recovery).27 The median R2s are almost the same, equal to 98.4%
and 98.3% respectively, and the median R2 difference is close to zero.

What is more relevant for the performance comparison is how the models
perform when their prices differ, resulting in misspecification errors. In fact, having
a large misspecification error standard deviation within the data sample is crucial
to validating the no-coupon recovery model. When predicted misspecification
errors are small, for example because the default probabilities are low, there is
only a small difference between the two models and so the pricing differences will
also be small. But, even if predicted misspecification errors are large, the full-
coupon recovery model may still generate lower pricing errors, for example, if the
bonds in the specific firm-day sample have very similar predicted misspecification
errors. In this case the misspecified model will be able to adjust, for example by
choosing a lower recovery rate, and the resulting pricing error differences relative
to the no-coupon recovery model will be small, albeit at the cost of biased model
parameter estimates. But, if there is a high variability of misspecification errors,
the incorrect model will fail to fit prices as well as the no-coupon recovery model.

27Both pricing models are non-linear and do not have a constant term. R2 is calculated relative
to a model with only a constant and it is therefore possible to end up with negative R2, if the
non-linear model is outperformed by the constant model. In those cases we set R2 equal to zero.
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Reflecting the large portion of the data with low misspecification errors, we see
that a large fraction of the data also has a low standard deviation of those errors.
The mean standard deviation is 20 cents (Table 4 Panel B) but the median is only
5 cents.

As predicted, we find that the no-coupon recovery model outperformance is
large when the misspecification error standard deviation is large. The second set
of results reported in Panel B is for the subsample of issuer days in the top quartile
of the misspecification error standard deviation distribution. In that group, the
minimum misspecification error standard deviation is 21 cents and the mean is
68 cents. Correspondingly, the differences in root mean squared error and R2s
are much larger, exactly as our model predicts. The mean RMSE is 68 cents
(no-coupon recovery) and 80 cents (full-coupon recovery) and the medians are 56
cents (no-coupon recovery) and 66 cents (full coupon recovery). R2 follows the
same pattern – the averages are equal to 80% (no-coupon recovery) and 75% (full-
coupon recovery). Even though we are considering only 25% of issuer days, this
sample reflects prices from 36,528 observations, which is 30.2% of observations, or
5.8 observations per issuer-day compared to 4.8 for the full sample.

The Determinants of No-coupon Recovery Model Outperformance

We next explore the determinants of the no-coupon recovery model’s outperfor-
mance. In Table 5 we first measure outperformance for the full sample and several
subsamples, and then regress outperformance on different sets of explanatory vari-
ables. On average, the no-coupon recovery model provides a better fit (also see
Table 4 Panel B). Pricing errors are 3.2 cents larger when using the full-coupon
recovery model and the difference is statistically significant. We have already seen
that the (in)ability of the full-coupon recovery model to fit the data reflects its
misspecified assumption. Thus, we expect a strong relationship between the no-
coupon recovery model outperformance and the misspecification error’s standard
deviation.28

We first focus on the subsample with the top 25% of default probabilities, an in-
dependent input to the model. For that subsample, the average root mean squared
errors are 10.6 cents larger for the full coupon recovery model; the difference is
three times the full sample difference. This outperformance is even larger when
considering the subsample with the highest 25% average misspecification error is-
suer days. Here the outperformance is 11.6 cents on average. As expected, the
best variable to find large outperformance is the misspecification error’s standard

28Recall that when estimating this model, the algorithm searches for those parameters to
maximize its fit. The examples of the issuers in bankruptcy nicely show that considering only
the average pricing error of the full-coupon recovery model misses the strong association of the
pricing errors with the bond’s maturity, a pattern that is a direct consequence of the model’s
misspecification.
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deviation. It may be large because of a large dispersion in maturities combined
with large default probabilities. The misspecified model does not have sufficient
degrees of freedom to match the data well and the no-coupon recovery model has,
on average, a 12.1 cent lower pricing error than the full-coupon recovery model.
The pattern is the same, only stronger, when examining the pricing errors in the
top deciles. For large default probability issuer days the outperformance is equal
to 16 cents, for the misspecification error it is 23.6 cents and for the standard
deviation it is equal to 24.3 cents. Pricing error differences are large when the
model predicts them to be large.

We next explore in more detail what determines the size of the no-coupon
recovery model outperformance. We regress pricing error differences on the four
variables that are the main determinants of the misspecification error (recovery
rate, maturity, coupon, and default probability). Recovery rate, maturity, and
default probability are all highly significant and come in with a positive sign; the
coupon rate also has a positive sign but is insignificant. All four variables enter
the misspecification error, but they do so in a specific way. When we include the
actual misspecification error in the regression, the coefficients of all four variables
become indistinguishable from zero. Meanwhile, the model fit increases from 26.2%
to 47.6%. Dropping the four variables results in almost the same fit of 47.3%.

Of course, these variables do not measure the dispersion of the misspecification
errors, though the misspecification error level and standard deviation are corre-
lated to each other and to the four variables. When we include the misspecification
error standard deviation together with the four variables, dispersion is the most
significant variable and the regression fit increases to 57.3%. Removing the four
variables results in almost the same fit of 56.6%. The coefficients on the four
inputs are now negative, most likely capturing non-linearities in the relationship
rather than their independent importance.

We also find that the misspecification error standard deviation is what is im-
portant for model outperformance. When both the level and the standard de-
viation are included together, the level becomes insignificant and the model fit
is practically the same as using only the standard deviation. The ability of the
misspecification error standard deviation to explain variation in model outperfor-
mance is direct evidence supporting our hypothesis that the market prices bonds
according to the no-coupon recovery model instead of the full-coupon recovery
model.

To summarize, our analysis provides evidence that the pricing error differences
between the two models are statistically significant for the full sample. Impor-
tantly, variation in model outperformance occurs exactly at those times when the
model predicts it. This evidence is for a sample consisting of 94.6% investment
grade debt (98.9% with a rating of BB+ or above) and thus one where market par-
ticipants perceive default is not imminent. As we discussed earlier, when default
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Table 5: Determinants of Model Performance
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risk is larger, differences across the models are even larger.

Errors and Biased Parameter Estimates in the Full-Coupon Recovery
model: A Quasi-Simulation

One way to check that our results are due to the misspecified assumptions un-
derlying the full-coupon recovery model is to use a simulation to calculate pricing
errors. We do this using our actual data as the basis for a quasi-simulation. Specif-
ically, we assume that the no-coupon recovery model’s parameters are unbiased
and calculate market prices based on that model. We then use the full-coupon
recovery model to price these bonds. This enables us to trace out the effects of
using these misspecified assumptions on the prices.

We find that the expected biases arise. The misspecification error’s standard
deviation is closely related to the pricing error and there is a downward bias on
the recovery rate. When regressing issuer-date level root mean squared errors on
the misspecification error’s standard deviation, the R2 is equal to 75% for the full
sample. Thus, whenever the full-coupon recovery model has more difficulty using
the parameters to fit the data, the actual mean-squared errors are larger. We also
find that the full-coupon recovery parameter estimates are indeed biased relative
to the no-coupon recovery model’s parameters, which in this exercise are assumed
to be the actual underlying parameters. The effect is more pronounced for recovery
rates. The full-coupon recovery model’s estimated recovery rate is 3% lower for
the full sample and 6.7% lower for the subsample with the highest quartile of the
misspecification error’s standard deviation. For the liquidity parameter the effect
is much smaller. For the full sample, the bias is equal to 0.02% (full-coupon-implied
liquidity is more negative), while it is 0.13% for the top 10% of the misspecification
error’s standard deviation subsample. In short, the patterns we find in the data
are directly driven by the full-coupon model’s assumptions.

6.2 Time Variation in Model Performance and Parameter Esti-
mates

We have documented the no-coupon recovery model’s outperformance in the full
sample. We now turn to studying the time variation in its outperformance. Each
week we average all the issuer days with above-median misspecification error vari-
ance and then average the difference in the full-coupon and no-coupon recovery
model RMSE. Figure 4 plots the time series of the no-coupon recovery model’s
outperformance. There is some noticeable time variation. Toward the end of 2018
and in the beginning of 2019 the model’s outperformance increases, reaching a
peak of about 14 cents. This episode happened contemporaneously with a stock
market downturn and a corresponding increase in volatility and default probabili-
ties. Then, at the beginning of the pandemic in early 2020 we also see an increase
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Figure 4: Error Difference Over Time

in model outperformance reaching a weekly average of 26 cents. Note that, with
the exception of two averages at the end of 2020, all of the remaining 175 weeks
exhibit the average outperformance of the no-coupon recovery model.

As reported in Table 5, the misspecification error standard deviation explains
57% of the variation in no-coupon recovery model outperformance as measured by
the RMSE difference. Figure 5 shows this pattern graphically. We plot the same
weekly averages of the above-median misspecification error standard deviation ob-
servations as in Figure 4. The figure shows a clear linear pattern. Easily identified
are the pandemic observations as those with higher model outperformance. This
provides evidence in support of our pricing model, because these observations are
the ones where the misspecification error’s standard deviation is large. However,
it is not immediately apparent how close the relationship is between misspecifi-
cation error and model outperformance outside of 2020. To check this, we ran
a regression of all issuer day RMSE differences, and the R2 actually increases to
65%.

Figure 6 graphs the weekly averages, confirming the clear relationship present
in the full-sample results. The relationship continues to be linear. The only
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Figure 5: Error Difference RMSE

difference is that all of the weekly observations of average misspecification error
standard deviations between 0.6 and 1.3 are no longer present.

We next turn to the illiquidity and recovery rate futures price (recovery rate, for
short) parameters over time. Figure 7 plots the weekly average of the illiquidity
parameters. We again notice a slight increase in late 2018, early 2019. The
much more striking and larger increase in the illiquidity parameters occur at the
beginning of the pandemic. The average illiquidity parameter increases to just
above 3%. This increase is matched by the increase in the Aaa-Treasury spread,
which we also plot in the figure. We interpret the Aaa-Treasury spread as a related
measure of illiquidity. Indeed, as is evident from the figure, the two series move
together; the correlation is equal to 77%. The close relationship between the
Aaa-Treasury spread provides independent validation of our approach modeling
corporate bond illiquidity.

Finally, we plot the average recovery rate over time in Figure 8. As pointed out
in Section 2, the fact that there is no recovery of coupons in the event of default
means that recovery rates can be directly inferred from bond prices. This is an
important empirical novelty compared to an inability to disentangle recovery rates

34



Figure 6: Error Differences not 2020

35



Figure 7: Liquidity Parameter versus Aaa-Treasury spread

and default probabilities if equal seniority is assumed and there is a single spread
used to discount all cash flows. The most noticeable pattern is an increase in
recovery rates in late 2018 and early 2020. Bond prices can decline either because
of lower recovery rates or because of more illiquidity. Our estimates suggest that, at
least during part of the sample period, the two effects moved in opposite directions.

6.3 Robustness

This section provides several robustness tests of the model’s performance.

Daily Observation Cutoffs

In our estimation, we fit the recovery and illiquidity parameters for each issuer
day, and we require a minimum of two bond price observations for each issuer
day. Another possibility is to choose minimum observation cutoffs, for example
requiring at least five or ten observations for each issuer day. Such a restriction
has the benefit of reducing estimation noise but comes at the cost of shrinking
the sample size. We have checked that our results are robust to increasing the
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Figure 8: Recovery Rate Futures Price Parameters
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minimum required number of observations.

Monthly Observations

Another way in which noise in parameter estimates can be reduced is to estimate
the recovery and illiquidity parameters for all the issuer observations in one month
rather than for one day. This approach significantly increases the number of
observations used to fit the recovery and illiquidity parameters. It also has the
benefit of not reducing the overall sample size. Our results are robust to this
change too. In particular, we see a similar level of outperformance of the no-coupon
recovery model, though both models fit less well since there is now less parameter
flexibility. Our findings suggests that outperformance is not directly linked to
sample size. This result is consistent with our findings that the misspecification
error’s variance explains well the variation in model outperformance.

Implied Default Probabilities

In our main results we use independently estimated default probabilities from a
proportional hazard model and then implicitly estimate the illiquidity and recovery
rate parameters. We now check that our results do not depend on these proba-
bilities. We can also fit our model (11) assuming a flat term structure of default
probabilities and estimate the default intensity implicitly. In the model, a change
in the default probability affects the present value of all cash flows, both coupons
and principal. The same is true for a change in the illiquidity parameter. From
expression (11) and the spread curve examples in Table 3 we know that the effect
is not exactly the same however, and so it is possible to estimate both separately.
Nevertheless, to guard against unstable estimates, we fit two different models.
One where, in addition to the illiquidity and the recovery parameter, we estimate
a default intensity from the bond data. The second, a model where we set the
illiquidity discount equal to zero and estimate only a recovery rate and a default
intensity. As before, we do this both at the issuer-day and the issuer-month levels.
Our main result of outperformance of the no-coupon recovery model is robust to
this approach.

Alternative Bounds for the Illiquidity and Recovery Parameters

In Section 2 we saw that spread-implied recovery values can be quite large, and
larger than the upper bound of 80% on the recovery rates imposed when esti-
mating our model. We relax this restriction and instead fit our model assuming
that recovery rates can reach 100%. We do this both for the issuer-day estimation
approach which forms the basis for our main results as well as for the monthly
observation methodology. We also allow the illiquidity parameter to reach 10%.
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Our results are robust to this change. There continues to be substantial out-
performance of the no-coupon recovery model relative to the full-coupon recovery
model. We actually see an improvement in the overall fit of the no-coupon recovery
model’s performance.

7 Conclusion

This paper makes three contributions to the literature on corporate bond pricing.
First, we provide evidence that the common assumption of equal seniority of prin-
cipal and coupon payments is not supported by market transaction prices. Coupon
spreads are much higher than principal spreads, and assuming that a single spread
can be used to discount all of the bond’s cash flows results in pricing errors that are
more than twice as large compared to using different, seniority-specific spreads.

Second, we propose a new and tractable coupon bond valuation model, which
includes a more realistic recovery rate process that distinguishes between coupon
payments received before and after default. Our approach has important benefits:
(1) we show how to price bonds using building block securities – survival digitals,
which pay off in the event of no default, and default digitals, which pay off in
the event of default. In this way we show that seniority-specific discount rates
arise when taking into account different recovery rates of principal and coupons.
Using these building block securities for pricing makes the model intuitive and
straightforward to implement. (2) The model has a clear prediction about the
importance of modeling the market practice of zero recovery on coupons paid after
default. We calculate misspecification errors – those resulting from using the full-
coupon recovery model rather than the no-coupon recovery model. When these
errors are large, the no-coupon and the full-coupon recovery model’s predictions
differ by more. Misspecification errors depend directly on the coupon, recovery
rate, default probability, and time to maturity, and they can be substantial in size.

Third, using a large sample of bond transaction prices we demonstrate that
our no-coupon recovery model’s predictions are reflected in the data and that,
therefore, market participants are pricing default risky coupon bonds taking zero
coupon recovery after default into account. The model has a clear prediction
when no recovery on coupons after default is quantitatively relevant for pricing
and when it is less important – if default probabilities, coupons, or maturity are
small, the effect of differing recovery assumptions for coupons has only a very
small impact. There is clear evidence supporting this prediction in the data.
We can detect our model’s pricing effects in the full sample. In addition, and
more importantly, we find that model outperformance is closely related to the
misspecification error’s standard deviation. When that standard deviation is large,
our model predicts that bond prices will be the most affected by the erroneous
assumption of full-coupon recovery after default. The fact that the misspecification
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error’s standard deviation explains model outperformance so well is thus direct
evidence supporting the no-coupon recovery model. Separately, we find that the
no-coupon recovery outperformance is evident when considering bond prices of
companies in bankruptcy.

Finally, our model allows for direct estimation of implied recovery rates and
illiquidity effects on bond prices. When the global pandemic hit in 2020, default
probabilities increased substantially and bond prices dropped. The no-coupon
recovery model outperformance increased, as predicted by our model. At the
same time, illiquidity increased markedly, consistent with standard corporate bond
illiquidity measures such as the Aaa-Treasury spread.

References

[1] K. Adams and D. van Deventer, 1994, “Fitting Yield Curves and Forward
Rate Curves with Maximum Smoothness,” Journal of Fixed Income, June, 52
- 62.

[2] G. Bakshi, D. Madan, and F. Zhang, 2006, “Understanding the Role of Re-
covery in Default Risk Models: Empirical Comparisons and Implied Recovery
Rates,” September, FDIC CFR Working Paper No. 06.

[3] Basel Committee on Banking Supervision, 2010, Basel III: A global regulatory
framework for more resilient banks and banking systems, December, Bank for
International Settlements.

[4] Basel Committee on Banking Supervision, 2017, Basel III: Finalizing the
post-crisis reforms, December, Bank for International Settlements.

[5] A. Berndt, R. Douglas, D. Duffie, and M. Ferguson, 2018, “Corporate Credit
Risk Premia,” Review of Finance, 22(2), 419–454.

[6] T. Bielecki and M. Rutkowski, 2002, Credit Risk: Modeling, Valuation and
Hedging, Springer Verlag, Berlin.

[7] P. Bremaud, 1980, Point Processes and Queues: Martingale Dynamics,
Springer Verlag, Berlin.

[8] J. Y. Campbell, J. Hilscher, and J Szilagyi, 2008, “In Search of Distress Risk,“
Journal of Finance, 63(6), 2899–2939.

[9] J. Y. Campbell, J. Hilscher, and J. Szilagyi, 2011, “Predicting Financial Dis-
tress and the Performance of Distressed Stocks,” Journal of Investment Man-
agement, 9(2), 14–34.

40



[10] J. Y. Campbell, and G. B. Taksler, 2003, “Equity Volatility and Corporate
Bond Yields,” Journal of Finance, 58, 2321-2350.

[11] U. Cetin, R. Jarrow and P. Protter, 2004, “illiquidity Risk and Arbitrage
Pricing Theory,” Finance and Stochastics, 8 (3), (August ), 311 - 341.

[12] S. Chava and R. Jarrow, 2004, “Bankruptcy Prediction with Industry Effects,”
Review of Finance, 8 (4), 537 - 569.

[13] J. Cherian, E. Jacquier, and R. Jarrow, 2004, “A Model of the Convenience
Yields in On the Run Treasuries,” Review of Derivatives Research 7, 79 - 97.

[14] P. Collin-Dufresne and R. Goldstein, 2001, “Do Credit Spreads Reflect Sta-
tionary Leverage Ratios,” Journal of Finance, 56 (6), 1929 - 1957.

[15] P. Collin-Dufresne, R. Goldstein, and J. Martin, 2001, “The Determinants of
Credit Spread Changes,” Journal of Finance, 56 (5), 2177 - 2207.

[16] J. Driessen, 2005, “Is Default Event Risk Priced in Corporate Bonds?,” The
Review of Financial Studies, 18 (1), 165 - 195.

[17] G. Duffee, 1999, “Estimating the Price of Default Risk,” The Review of Fi-
nancial Studies,” 12 (1), 197 - 226.

[18] D. Duffie, L. Pedersen, and K. Singleton, 2003, “Modeling Sovereign Yield
Spreads: A Case Study of Russian Debt,” Journal of Finance, 63 (1), 119 -
159.

[19] D. Duffie and K. Singleton, 1999, “Modeling Term Structures of Defaultable
Bonds,” Review of Financial Studies, 12 (4), 687 - 720.

[20] E. Elton, M. Gruber, D. Agrawal, and C. Mann, 2001, “Explaining the Rate
Spread on Corporate Bonds,” Journal of Finance, 56 (1), 247 - 277.

[21] T. Fleming and D. Harrington, 1991, Counting Processes and Survival Anal-
ysis, John Wiley & Sons, Inc., New York.

[22] S. Gilchrist and E. Zakrajšek, 2012, “Credit Spreads and Business Cycle Fluc-
tuations,” American Economic Review, 102 (4), 1692-1720.

[23] R. Guha and A. Sbuelz, 2005, “Structural Recovery of Face Value at Default,”
unpublished working paper, University of Verona, Italy.

[24] X. Guo, R. Jarrow and H. Lin, 2008, “Distressed Debt Prices and Recovery
Rate Estimation,” Review of Derivatives Research, 11, 171 - 204.

41



[25] D. Heath, R. Jarrow and A. Morton, 1992, "Bond Pricing and the Term
Structure of Interest Rates: A New Methodology for Contingent Claims Val-
uation," Econometrica, 60 (1), 77 - 105.

[26] J. Hilscher, Y. Nosbusch, 2010, “Determinants of Sovereign Risk: Macroeco-
nomic Fundamentals and the Pricing of Sovereign Debt,” Review of Finance,
14 (2), April, 235–262.

[27] J. Huang and M. Huang, 2012, “How Much of the Corporate-Treasury Yield
Spread Is Due to Credit Risk?,” Review of Asset Pricing Studies, 2 (2), De-
cember, 153–202.

[28] J. Jacod and P. Protter, 2010, “Risk Neutral Compatibility with Option
Prices,” Finance and Stochastics, 14, 285 - 315.

[29] R. Jankowitsch, F. Nagler, and M. G. Subrahmanyam, 2014, “The determi-
nants of recovery rates in the US corporate bond market,” Journal of Finan-
cial Economics, 114 (1), 155-177.

[30] R. Jarrow, 2004, “Risky Coupon Bonds as a Portfolio of Zero-coupon Bonds,”
Finance Research Letters, 1, 100 - 1005.

[31] R. Jarrow, 2009, “Credit Risk Models,” Annual Review of Financial Eco-
nomics, 1, 37 - 68.

[32] R. Jarrow, 2021, Continuous-Time Asset Pricing Theory: A Martingale-
Based Approach, 2nd Edition, Springer.

[33] R. Jarrow, D. Lando and F. Yu, 2005, “Default Risk and Diversification: The-
ory and Empirical Applications,” Mathematical Finance, 15 (1), (January),
1 - 26.

[34] R. Jarrow and M. Larsson, 2012, “The Meaning of Market Efficiency,” Math-
ematical Finance, 22 (1), 1-30.

[35] R. Jarrow and P. Protter, 2008, “An Introduction to Financial Asset Pricing,”
Handbooks in OR&MS, Chap. 1 (J. R. Birge & V. Linetsky eds.), Vol. 15.
Philadelphia: Elsevier B.V.

[36] R. Jarrow and S. Turnbull, 1995, “Pricing Derivatives on Financial Securities
Subject to Credit Risk," Journal of Finance, 50 (1), 53 - 85.

[37] R. Jarrow and S. Turnbull, 1997, “An Integrated Approach to the Hedging
and Pricing of Eurodollar Derivatives,” Journal of Risk and Insurance, 64 (2),
271 - 299.

42



[38] R. Jarrow and S. Turnbull, 2000, “The Intersection of Market and Credit
Risk,” Journal of Banking and Finance, 224, 271 - 299.

[39] M. Kargar, B. Lester, D. Lindsay, S. Liu, P. O. Weill, and D. Zúñiga, 2021,
“Corporate Bond illiquidity during the COVID-19 Crisis,” The Review of
Financial Studies, 34 (11), November, 5352–5401.

[40] D. Lando, 1998, “On Cox Processes and Credit Risky Securities,” Review of
Derivatives Research, 2, 99 - 120.

[41] F. Longstaff, S. Mithal, and E. Neis, 2005, “Corporate Yield Spreads: Default
Risk or illiquidity? New Evidence from the Credit Default Swap Market,”
Journal of Finance, 60 (5), 2213 - 2253.

[42] D. Madan and H. Unal, 1998, “Pricing the Risks of Default,” Review of Deriva-
tives Research, 2, 121 - 160.

[43] P. Protter, 2005, Stochastic Integration and Differential Equations, 2nd edi-
tion, Springer-Verlag: New York.

[44] T. Shumway, 2001, “Forecasting Bankruptcy More Accurately: A Simple Haz-
ard Model,” Journal of Business, 74(1), 101–124.

43



Appendix.

The Bond Valuation Formula

This appendix formalizes the pricing model in Section 3. We consider a contin-
uous trading model on a finite horizon [0, T ∗]. The uncertainty in the model is
characterized by a complete filtered probability space (Ω,F , (Ft)t∈[0,T ∗],P) where
the filtration (Ft)t∈[0,T ∗] satisfies the usual hypotheses and F = FT ∗ .29 Here P is
the statistical probability measure.

The default-free money market account earns interest continuously at the
default-free spot rate of interest, rt, which is adapted to (Ft)t∈[0,T ∗]. As in the
text, money market account’s time t value is30

Bt = e
∫ t
0 rsds. (12)

The default-free zero-coupon bond, denoted by p(t, T ) > 0, is adapted to (Ft)t∈[0,T ∗].
Let Γt = (Γ1(t), . . . ,Γn(t))′ ∈ Rn be a collection of stochastic processes char-

acterizing the state of the firm and the market at time t with FΓ
t representing the

filtration generated by the state variables Γt up to and including time t ≥ 0. We
assume that these state variables are adapted to Ft, which implies that FΓ

t ⊂ Ft.
We assume that rt is FΓ

t - measurable.
Let λ : [0, T ∗] × Rn −→ [0,∞), denoted λt = λt(Γt) ≥ 0, be jointly Borel

measurable with
∫ T ∗

0 λt(Γt)dt <∞ a.s. P, and let Nt ∈ {0, 1, 2, · · · } with N0 = 0
be a Cox process conditioned on FΓ

T with λt(Γt) its intensity process (see Lando
(1998)). Finally, let the default time τ ∈ [0, T ∗] be the stopping time adapted to
the filtration Ft defined by

τ ≡ inf {t > 0 : Nt = 1} .

The function λt(Γt) is the firm’s default intensity. A Cox process is a point pro-
cess which, conditional upon the information set generated by the state variables
process Γt over the entire trading horizon [0, T ∗] behaves like a standard Poisson
process. In particular,

P(τ > T
∣∣FΓ

T ∗ ∨ Ft ) = e−
∫ T
t λudu

and
P(τ > T |Ft ) = EP

[
e−

∫ T
t λudu |Ft

]
.

Letting the time t ≤ t1 value of the coupon bond be vt, we add the following
assumption.

29See Protter (2005) for the definitions of these various terms.
30Of course, we assume the necessary measurability and integrability such that the following

expression is well-defined.
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Assumption. (Existence of an Equivalent Martingale Measure)
There exists an equivalent probability measure Q such that

p(t, T )

Bt
for all T ∈ [0, T ∗] and

vt
Bt

are Q martingales.
Equivalent means that both the probability measures P and Q agree on zero

probability events. It is well known that this assumption implies that the market
is arbitrage-free. See Jarrow and Protter (2008). Given an equivalent martingale
measure Q, define λ̃t ≡ λtκt to be the intensity process of the Cox process under
Q where κt(ω) ≥ 0 is a predictable process with

∫ T ∗
0 λt(Γt)κtdt < ∞ a.s. P

(see Bremaud (1980), p. 167). The process κt(ω) represents a default jump risk
premium.

Let Frt denote the filtration generated by rt, Fτ the σ−algebra generated by
the default time τ (see Protter (2005), p. 5), and Fδt the filtration generated by
the recovery rate process δt, which is the hypothetical recovery rate obtained if
the assets were liquidated at time t. Finally, let Gt be a filtration independent of
Frt ∨ Fδt ∨ Fτ where Ft ≡ Frt ∨ Fδt ∨ Fτ ∨ Gt. We add the following assumption.

Assumption. (Conditional Independence)
The default-free spot rate rt, the default time τ , and the recovery rate process δt
are independent under Q given the filtration Gt for all t.

Proof. (The Bond Valuation Formula)
The only difficult term is EQ

[
1{tk−1<τ≤tk≤T}δtke

−
∫ tk
t rudu |Ft

]
. We have by

conditional independence that

EQ
[
1{tk−1<τ≤tk≤T}δtke

−
∫ tk
t rudu |Ft

]
= EQ [1{tk−1<τ≤tk≤T} |Ft

]
EQ [δtk |Ft ]E

Q
[
e−

∫ tk
t rudu |Ft

]
.

Using the definition of dt and p(t, tk) gives

vt =
∑m

k=1Cp(t, tk)E
Q [1{τ>tk} |Ft ]+ Lp(t, T )EQ [1{τ>T} |Ft ]

+
∑m

k=1 Lp(t, tk)dtE
Q [1{tk−1<τ≤tk≤T} |Ft

]
.

The Recovery Rate Futures Price

This section explains why dt can be interpreted as a futures price. Define

dt := EQ [δT ∗ |Ft ]
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for t ∈ [0, T ∗] where δT ∗ corresponds to the recovery rate if default happens at time
T ∗. That this can be interpreted as a futures price follows from the commodities
pricing literature (for example see Jarrow (2021), chapter 6). Since dt is a Q−
martingale, the recovery rate futures price is equal to

dt = EQ [δτ |Ft ] ,

which is the risk adjusted expected value of the recovery rate at the default time
τ . The relation between the recovery rate process δt and the futures price dt is
given by the following expression

δt = dtE
Q
[
Bt
Bτ
|Ft
]
. (13)

Proof (Expression (13)).

Define the recovery rate process δt on [0, T ∗] as the liquidation value of the firm at
time t. Using the notation in the text, the following time line documents relevant
dates.

0 · · · t · · · tk τ · · · tk+1 · · · τ∗ · · · T ∗

default payment
(d0, δ0) (dt, δt) (dτ , δτ ) (dτ∗ , δτ∗) (dT ∗ = δT ∗)

Both τ and τ∗ are stopping times with τ∗ > τ . τ is the firm’s default time.
Due to cross-defaulting provisions, if one liability defaults, all default at the same
time. τ∗ corresponds to the date the payments on all of the firm’s liabilities are
paid, after liquidation or financial restructuring. It occurs, as indicated, after the
default date. Time T ∗ is when the model ends. The arbitrage free value of the
recovery rate payment at time t ∈ [0, T ∗] is

δt = EQ
[
δT ∗

BT ∗
|Ft
]
Bt.

Using iterated expectations, we obtain

δt = EQ
[
δτ
Bτ
|Ft
]
Bt. (14)

Under the conditional independence of δt and rt, we can rewrite this as

δt = EQ
[
EQ [δτ |Ft ∨ τ ]EQ

[
Bt
Bτ
|Ft ∨ τ

]
|Ft
]

=
M∑
i=1

EQ [δti |Ft; ti−1 < τ ≤ ti ]EQ
[
Bti
Bτ
|Ft; ti−1 < τ ≤ ti

]
ProbQ [ti−1 < τ ≤ ti |Ft ]
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=
M∑
i=1

EQ [δti |Ft; ti−1 < τ ≤ ti ]EQ
[
Bti
Bτ
|Ft; ti−1 < τ ≤ ti

]
[Q(t, ti)−Q(t, ti−1)]

where tM = T ∗ and Q(t, ti) = EQ [1τ≤ti |Ft ] = ProbQ [τ ≤ ti |Ft ].
Recall that all payments occur at the next payment date after default.
Using the conditional independence of δt and rt from τ , we can rewrite this as

δt =

M∑
i=1

EQ [δti |Ft ]EQ
[
Bt
Bti
|Ft
]

[Q(t, ti)−Q(t, ti−1)] .

Last, using the definition of dt and noting that EQ
[
Bt
Bti
|Ft
]

= p(t, ti) we get

δt = dt

M∑
i=1

p(t, ti) [Q(t, ti)−Q(t, ti−1)] .

We note that this implies

δt = dtE
Q
[
Bt
Bτ
|Ft
]
.

End of proof.
Given this expression, it is easily seen that the recovery rate futures price is

strictly greater than the recovery rate δt since EQ
[
Bt
Bτ
|Ft
]
< 1. This difference is

expected to be small since interest rates are small over our sample period.
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