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Abstract

This paper proposes and estimates a tractable, arbitrage-free valuation
model for corporate coupon bonds that includes a more realistic recovery rate
process. The existing empirical literature uses a recovery rate process that is
misspecified because it includes recovery rates for coupons due after default.
Misspecification errors resulting from assuming recovery on all coupons can
be substantial in size. They are larger if recovery rates, coupons, maturity
and default probabilities are larger. We present evidence that coupon bond
market transaction prices reflect the different recovery rates that our model
predicts and that our model provides a good fit to market prices.

1 Introduction

An important and still debated issue in the fixed income literature is the exact
decomposition of a coupon bond’s credit spread into its various components: the
expected loss, a default risk premium, a liquidity risk premium, and an adjustment
for the deductibility of government bond income for state taxes. This literature
can be partitioned into two streams. The first stream estimates credit spreads
directly (see Elton, Gruber, Agrawal, and Mann [18], Collin-Dufresne, Goldstein,
and Martin [13]), and the second stream prices bonds or related securities using a
reduced form model (see Duffee [15], Duffie, Pedersen, and Singleton [16], Driessen
[14], and Longstaff, Mithal, and Neis [23]). A careful reading of these papers shows
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that this literature makes the assumption (either implicitly or explicitly) that a
coupon bond is equivalent to a portfolio of risky zero-coupon bonds valued using
a single term structure. The number of zero-coupon bonds held in the portfolio
corresponds to the promised coupons and principal with their maturities corre-
sponding to the payment dates (see expression (10) in the text). For the credit
spread estimation literature, this implicit assumption follows because all promised
coupons and principal are included when computing a bond’s credit spread. In
the reduced form model literature, the recovery rate process utilized is the “recov-
ery of market value (RMV)” introduced by Lando [33] and Duffie and Singleton
[17], which implies this result. This pricing approach assumes that when discount-
ing, coupon and principal cash flows are treated the same, and, therefore, that
both promised payments entitle the holder to recovery in default. For subsequent
discussion, we therefore call this approach the “full-coupon recovery” model.

As shown by Jarrow [25], a single term structure of risky zero-coupon bonds
that can be used for valuing coupon bonds is valid if and only if all of the risky zero-
coupon bonds are of equal seniority and all have the same recovery rate in the event
of default. However, this assumption is inconsistent with industry practice. After
default, as evidenced by financial restructurings and default proceedings, only the
bond’s principal becomes due, and no additional coupon payments are made on or
after the default date. This implies that coupon and principal payments cannot
be valued using the same (single) credit spread or spread term structure and that
basing a bond valuation model on the erroneous assumption of equal seniority will
produce predicted model prices that have misspecification errors.

Industry practice has been confirmed in the recovery rate estimation literature
where it has been shown that alternative recovery rate processes,1 either the “re-
covery of face value (RFV)” or the “recovery of Treasuries (RTV)” formulations,
provide a better approximation to realized recovery rates than does RMV (see
Guha and Sbuelz [21] and Guo, Jarrow and Lin [20]). And, it is also well known
that both the RFV and RTV recovery rate processes are consistent with a zero
recovery on coupons promised after default. Therefore, these recovery rate pro-
cesses do not imply the full-coupon recovery model. See Jarrow and Turnbull [32],
Bielecki and Rutkowski [5], chapter 13, and Collin-Dufresne and Goldstein [12] for
models with zero recovery on coupons promised after default.2

The purpose of this paper is to explore, both theoretically and empirically, the
effect on bond prices assuming zero recovery on coupons promised after default.
To do so we derive an empirically tractable reduced form bond pricing model,
the form of which is new to the literature. For subsequent discussion, we refer
to it as the “reduced form” model. We derive an intuitive and straightforward-

1See Bielecki and Rutkowski [5], Chapter 8 for a discussion of these different recovery rate
processes.

2Unlike our paper, these studies do not explore empirically the pricing effect of zero coupon
recovery.
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to-implement pricing formula in which model prices depend only on the risk-free
term structure, the term structure of default probabilities, and two parameters
that we estimate – the recovery rate and a parameter capturing liquidity. We also
show that the bond can be valued using the following “building block” securities:
zero recovery zero coupon bonds, which pay off if there is no default, and digital
recovery bonds, which pay off only in the event of default. The decomposition is
useful both to build pricing intuition and for the empirical implementation.

We adapt the common practice of pricing bonds by calculating credit spreads
and show that our reduced form model can be computed using two different issuer
and maturity specific discount rate functions – spread curves – one for coupons
and one for principal, rather than using the traditional single curve for both.

We perform a calibration of the model to demonstrate that the spreads appro-
priate for discounting coupon and principal payments can be quite different. We
calculate misspecification errors relative to a full-coupon recovery model, which
generates prices that are too large since it erroneously assumes a positive recov-
ery associated with coupon payments due after default, when in reality they are
zero. The misspecification errors that result from this assumption are larger if
recovery rates, default probabilities, maturity or coupon payments are larger. For
example, for a 10-year bond with a recovery rate of 40%, a coupon of 2.61%, and
an annual default probability of 1%, the full-coupon recovery model will assign a
price that is $0.50 too large. If it is a 30-year bond, the price is $3.61 too large, a
substantial difference relative to the correct price, which is equal to par. We cal-
culate exact misspecification errors and also provide an approximate formula that
can be used to estimate the misspecification error magnitudes. In this estimate,
misspecification errors are proportional to the recovery rate and the coupon size;
they are approximately proportional to the default probability and the square of
the number of coupon payments, which results in a close relationship to maturity.

We begin our empirical work by providing direct evidence of a difference in se-
niority between principal and coupons. We provide three examples of issuers that
have filed for bankruptcy: Lehman Brothers, Pacific Gas and Electric (PG&E),
and Weatherford International. We use both the misspecified full-coupon recovery
model and our reduced form model to price the bonds. We find that pricing errors
from using the full coupon recovery model are between five and ten times as large
as the reduced form model pricing errors. Observed prices are thus consistent
with market participants assuming zero recovery on coupons and they are incon-
sistent with the assumption of equal recovery. This analysis provides independent
evidence in support of the validity of the industry pricing practice implying zero
recovery on coupons discussed above.

Next, we investigate if and when the differences in seniority is reflected in
traded bond prices prior to default. To do so we perform a comparative analysis
of the reduced form model against the full-coupon recovery model and a credit
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ratings-based valuation model that underlies the Basel Committee on Banking
Supervision’s regulations (Basel Committee on Banking Supervision [2, 3]). Both
of these models value a coupon bond as if it is a portfolio of zero-coupon bonds
(as discussed above). Our sample consists of daily market prices for a collection
of liquidly traded bonds over the period from September 1, 2017 through June 30,
2019.

We show that the reduced form model outperforms both the full coupon re-
covery and the ratings based models. First, we fit the reduced form model to the
data to recover unbiased estimates of the model parameters. Second, we calcu-
late predicted full-coupon recovery model misspecification errors based on these
parameters. Misspecification errors are large (5% are larger than $1.43) and they
are highly correlated with our simple approximation formula. We next run a horse
race between the models; we use both models for pricing and then compare pricing
errors. The reduced form model again outperforms the coupon recovery model.
This is true for the full sample. In particular, the outperformance is larger for large
default probability issuer-days, exactly those cases where we expect the erroneous
assumption of equal seniority to have the largest impact on misspecification errors.
The outperformance is also larger on those days where the full-coupon recovery
model’s misspecified assumptions imply that fitting the data becomes more dif-
ficult relative to the reduced form model. When including the more restrictive
assumption that credit spreads are the same for bonds with the same rating (the
credit ratings-based model), performance drops further. In sum, this evidence
provides strong support for the necessity of using the alternative methodology of
our reduced form model.

The outline of the paper is as follows. Section 2 presents the model for valuing
risky coupon bonds, while Section 3 discusses the model’s empirical parameteriza-
tion. Section 4 discusses the estimation procedures, while Section 5 presents some
illustrative pricing results for three companies that filed for bankruptcy. Section 6
presents a comparative analysis of two alternative pricing models, Section 7 pro-
vides a time series comparison of these models and the ratings-based model, and
Section 8 presents some specification tests. Section 9 concludes.

2 The Model

This section presents the model’s set-up, which is based on the reduced form model
of Jarrow and Turnbull [30], [32]3. We consider a continuous trading model on
a finite horizon [0, T ]. The uncertainty in the model is characterized by a com-
plete filtered probability space (Ω,F , (Ft)t∈[0,T ],P) where the filtration (Ft)t∈[0,T ]

3We note that Jarrow and Turnbull [32] contains a reduced form model with zero recoveries
paid on coupons due after default.
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satisfies the usual hypotheses and F = FT .4 Here P is the statistical probability
measure. By the statistical probability measure we mean that probability P from
which historical time series data are generated.

2.1 The Default-free Bond Market

We assume that traded in the economy are default-free zero-coupon bonds of all
maturities, a default-free money market account, and a risky coupon bond (to be
described later). The market is assumed to be frictionless and competitive. By
frictionless we mean that there are no transaction costs or trading constraints. By
competitive we mean that all traders act as price takers, i.e. their trades have no
impact on the price. Both the frictionless and competitive market assumptions are
relaxed, subsequently, when we add a liquidity discount to the valuation formula
(see expression (11) below). A liquidity discount modifies the valuation formula
incorporating transaction costs, convenience yields caused by trading constraints,
and any quantity impact of a trade on the market price.

The default-free money market account earns interest continuously at the
default-free spot rate of interest, rt, which is adapted to (Ft)t∈[0,T ]. We initialize
the money market account with a dollar at time 0 and denote its time t value by5

Bt = e
∫ t
0 rsds. (1)

We let the time t value of a default-free zero-coupon bond paying a dollar at time
T be strictly positive and denoted by p(t, T ) > 0.

2.2 The Risky Coupon Bond

We consider a firm that issues a bond with a coupon of C dollars, a face value
equal to L dollars, and a maturity date T . The bond pays the C dollar coupons
at intermediate dates {t1, ..., tm = T}, but only up to the default time τ . For
notational convenience, let the current time t = t0. If default happens prior to
the maturity date in the time interval (tk−1, tk], then we assume that the bond
pays a stochastic recovery rate of δtk ∈ [0, 1] on only the notional of L dollars at
time tk, which is Ftk−measurable. It is important to note that default can happen
anytime within this interval, but the payment only occurs at the end. If default
does not happen, the face value of L dollars is repaid at time T .

As an approximation, we assume that if default happens within the time in-
terval (tk−1, tk], then no recovery is received for the coupon payment promised at
time tk. In practice, a portion of the next coupon payment after default repre-
sents some accrued interest in an accounting sense, earned, but not yet paid. This

4See Protter [35] for the definitions of these various terms.
5Of course, we assume the necessary measurability and integrability such that the following

expression is well-defined.
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accrued interest has a recovery rate associated with it.6 We ignore this residual
payment in the event of default.

We now characterize the firm’s default time. Let Γt = (Γ1(t), . . . ,Γn(t))′ ∈ Rn
be a collection of stochastic processes characterizing the state of the firm and
the market at time t with FΓ

t representing the filtration generated by the state
variables Γt up to and including time t ≥ 0. We assume that these state variables
are adapted to Ft, which implies that FΓ

t ⊂ Ft. We include the default-free spot
rate of interest rt in this set of state variables, which implies that rt is also FΓ

t -
measurable. Examples of additional state variables that could be included in this
set are measures of economic growth, unemployment rates, and inflation rates.

Let λ : [0, T ] × Rn −→ [0,∞), denoted λt = λt(Γt) ≥ 0, be jointly Borel
measurable with

∫ T
0 λt(Γt)dt < ∞ a.s. P, and let Nt ∈ {0, 1, 2, · · · } with N0 = 0

be a Cox process conditioned on FΓ
T with λt(Γt) its intensity process (see Lando

[33]). Finally, let τ ∈ [0, T ] be the stopping time adapted to the filtration Ft
defined by

τ ≡ inf {t > 0 : Nt = 1} .

We let τ represent the firm’s default time. The function λt(Γt) is the firm’s
default intensity, which can be interpreted as the probability of default over the
small time interval [t, t+∆] conditional upon no default prior to time t. Intuitively,
a Cox process is a point process which, conditional upon the information set
generated by the state variables process Γt over the entire trading horizon [0, T ]
behaves like a standard Poisson process. In particular,

P(τ > T
∣∣FΓ

T ∨ Ft ) = e−
∫ T
t λudu

and
P(τ > T |Ft ) = EP

[
e−

∫ T
t λudu |Ft

]
.

2.3 No Arbitrage

We want to value the risky coupon bond in an arbitrage-free market. Hence, we
add the following assumption. Denote the time t ≤ t1 value of the coupon bond
as vt.

Assumption. (Existence of an Equivalent Martingale Measure)
There exists an equivalent probability measure Q such that

p(t, T )

Bt
for all T ∈ [0, T ] and

vt
Bt

are Q martingales.
6We appreciate the comments from Morrison & Foerster in this regard.
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Equivalent means that both the probability measures P and Q agree on zero
probability events. It is well known that this assumption implies that the market
is arbitrage-free. See Jarrow and Protter [24].

Given an equivalent martingale measure Q, define λ̃t ≡ λtκt to be the intensity
process of the Cox process under Q where κt(ω) ≥ 0 is a predictable process with∫ T

0 λt(Γt)κtdt <∞ a.s. P (see Bremaud [6], p. 167). The process κt(ω) represents
a default jump risk premium.

2.4 Risk Neutral Valuation

To value the risky coupon bond, we need one additional assumption. We assume
that the market is complete or that enough derivatives trade so that the enlarged
market including the traded derivatives is complete (see Jacod and Protter [24]
for a set of sufficient conditions on an incomplete market such that the expanded
market is complete). Given the trading of credit default swaps on traded bonds,
this is a reasonable approximation. By the second fundamental theorem of asset
pricing (see Jarrow and Protter [29]), completeness implies that the risk-neutral
probability Q is unique and risk-neutral valuation applies.

Given this structure, we can apply risk-neutral valuation to value the coupon
bond’s cash flows as in the following expression.

vt =
∑m

k=1CE
Q
[
1{τ>tk}e

−
∫ tk
t rudu |Ft

]
+ LEQ

[
1{τ>T}e

−
∫ T
t rudu |Ft

]
+
∑m

k=1 LE
Q
[
1{tk−1<τ≤tk≤T}δtke

−
∫ tk
t rudu |Ft

] (2)

This valuation formula reflects the expected discounted value of the random
cash flows to the risky coupon bond using the risk-neutral probabilities Q. The
cash flows correspond to the coupon payments C1{τ>tk} for k = 1, . . . ,m and
the principal L1{τ>T}, but only if no default occurs prior to the payment date,
plus the recovery payment on the principal in the event of default within the time
interval (tk−1, tk], 1{tk−1<τ≤tk≤T}δtkL summed across all the intervals within the
bond’s life. The discount rate is the default-free spot rate rt. The adjustment
for risk is via the use of the risk-neutral probabilities, instead of the statistical
probabilities P. The risk-neutral probabilities include the required risk premium.
Note as discussed above that no recovery payments are included for any coupon
payments occurring after the default date.

3 The Empirical Parameterization

To empirically implement and estimate expression (2), we need to add more struc-
ture to the evolution of the default-free term structure of interest rates, the default
process, and the recovery rate process. This section adds this structure.
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3.1 The Default and Recovery Rate Processes

This section presents the additional structure imposed on the default and recovery
rate process for empirical estimation. For this structure we need the following
notation. Let Frt denote the filtration generated by rt, Fδt the filtration generated
by δt, and Fτ the σ−algebra generated by the default time τ (see Protter [35],
p. 5). Finally, let Gt be a filtration independent of Frt ∨ Fδt ∨ Fτ where Ft ≡
Frt ∨ Fδt ∨ Fτ ∨ Gt. We can now state our first assumption on these processes.

Assumption. (The Default, Recovery, and Interest Rate Processes)
The default-free spot rate rt, the default time τ , and the recovery rate process δt
are independent under Q given the filtration Gt for all t.

This assumption is imposed for analytic tractability.7 It states that under the
risk neutral probabilities Q (Q provides an adjustment for risk), the spot rate,
the default time, and the recovery rate processes are independent given the infor-
mation in the filtration Gt, where Gt is the information in Ft that is independent
of the information that these processes themselves generate. The information in
Gt includes, for example, macro-economic variables characterizing the state of the
economy and a firm’s balance sheet data. Holding the information in Gt constant,
this implies that these processes exhibit no conditional (or unconditional) correla-
tions across time under the risk neutral probabilities. This is a weak assumption
on the evolutions of the default-free spot rate, the default time, and the recovery
rate.

If fact, this assumption imposes very little structure on the evolutions of these
stochastic processes under the statistical probabilities P. Under the statistical
probabilities, these processes need not be independent given Gt. Hence, nonzero
pairwise correlations between the observed default-free spot rate, the default time,
and the recovery rate processes, which are realizations under the statistical prob-
abilities P, are not excluded by this assumption. Non-zero correlations across the
default-free spot rate, default times, and recovery rates have been observed in his-
torical data, and these observations are consistent with the previous assumption.

Next, we add the following assumption on the recovery rate process.

Assumption. (The Recovery Rate Process is a Martingale under Q)

EQ [δs |Ft ] = δt

This assumption states that, after adjusting for risk, the best estimate at time
t of the recovery rate process at time s is its value at time t. This implies that

7In the subsequent proofs, this will enable the expectation of a product, given Gt, to be the
product of the expectations.
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the recovery rate process is stochastic and changes across time given changes in
the information set Ft. For example, recovery rates can be lower in bad times
than in good times. We note this assumption does not imply that the recovery
rate process is a martingale under the statistical probabilities P. It is important
to note that the recovery rate process δt represents the time t “expected value”
of the recovery rate δtk for default within (tk−1, tk], after the adjustment for risk.
The risk adjustment (under Q) will typically lower the estimated value of the
recovery rate. Hence, δt does not represent the actual recovery rate at time t.
This observation will prove useful in a subsequent section.

3.2 Zero-Recovery and Digital Recovery Securities

Before simplifying expression (2), we first digress to talk about two more basic
credit risky securities, zero-recovery zero-coupon bonds and digital recovery bonds.
These more basic securities will enable us to provide an intuitive interpretation
of the subsequent valuation formula. These securities were first discussed in the
literature by Madan and Udal [34].

Consider the time interval [tk−1, tk] for k = 0, . . . ,m,8 where default has not
yet happened, i.e. τ > tk−1. Define

• (A Zero-recovery Zero-coupon Bond with maturity tk) A zero-recovery zero-
coupon bond with maturity tk pays $1 at time tk only if default occurs after
tk, i.e. in symbols its payoff is 1{τ>tk}. The value of this security at time
s ≥ tk−1 is

EQ
[
1{τ>tk}e

−
∫ tk
s rudu |Fs

]
. (3)

Hence, these are risky zero-coupon bonds that have a zero recovery rate in
the event of default.

• (A Digital Recovery Bond for the interval (tk−1, tk] ) A digital recovery
bond pays $1 at time tk if default occurs within (tk−1, tk] . The value of this
security at time s ≥ tk−1 is

EQ
[
1{τ≤tk}e

−
∫ tk
s rudu |Fs

]
. (4)

Using the identity 1 = 1{τ≤tk} + 1{τ>tk}, it follows that

EQ
[
e−

∫ tk
s rudu |Fs

]
= EQ

[
1{τ≤tk}e

−
∫ tk
s rudu |Fs

]
+ EQ

[
1{τ>tk}e

−
∫ tk
s rudu |Fs

]
or

p(s, tk) = EQ
[
1{τ≤tk}e

−
∫ tk
s rudu |Fs

]
+ EQ

[
1{τ>tk}e

−
∫ tk
s rudu |Fs

]
. (5)

8Note that when k = m, tm = T .
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In words, at time s ∈ [tk−1, tk] where default has not yet happened (τ > tk−1),
a default-free zero coupon bond is equivalent to a portfolio consisting of a digital
recovery bond for the interval (tk−1, tk] and a zero-recovery zero-coupon bond with
maturity tk.9

The time t value of the left and right sides of expression (5) is

EQ
[
1{τ>tk−1}p(s, tk)e

−
∫ s
t rudu |Ft

]
= EQ

[
1{tk−1<τ≤tk}e

−
∫ tk
t rudu |Ft

]
+EQ

[
1{τ>tk}e

−
∫ tk
t rudu |Ft

]
.

(6)

This represents the present value of the tk maturity zero-coupon bond at time s,
which is received only if there is no default before or at time tk−1. The right side
is the present value of the digital recovery bond for the interval (tk−1, tk] and the
zero-recovery zero-coupon bond with maturity tk. This expression is used below
in the derivation of the empirical valuation formula.

3.3 The Estimated Valuation Formula

This section derives the estimated valuation formula used in the estimation under
the above assumptions. From expression (2), using the independence assumption,
the recovery rate assumption, and the definition of the risk neutral probability Q,
we have that

vt =
∑m

k=1Cp(t, tk)E
Q [1{τ>tk} |Ft ]+ Lp(t, T )EQ [1{τ>T} |Ft ]

+
∑m

k=1 Lp(t, tk)δtE
Q [1{tk−1<τ≤tk≤T} |Ft

]
.

(7)

Using the identity 1{tk−1<τ≤tk} = 1{τ>tk−1} − 1{τ>tk}, after some algebra we get
that

vt = Lp(t, T )EQ [1{τ>T} |Ft ]+ (C − Lδt)
∑m

k=1 p(t, tk)E
Q [1{τ>tk} |Ft ]

+Lδt
∑m

k=1 p(t, tk)E
Q [1{τ>tk−1} |Ft

]
.

(8)

Using expression (6), we see that the last term in this expression is the sum of
the present values of the tk maturity zero-coupon bonds, which are received only
if there is no default before or at time tk−1. This expression has an intuitive
interpretation, using the zero-recovery zero-coupon bonds previously discussed. It
shows that a risky coupon bond can always be decomposed into a portfolio of
zero-recovery zero-coupon bonds.

9The reason for this is that, as discussed above, there is a close relationship between the value
of digital recovery securities and adjacent zero-recovery zero-coupon bonds. We also note that
the valuation of corporate coupon bonds is only one example of the advantages of pricing using
these building block securities. Other securities that depend on default, e.g. CDS contracts,
sovereign bonds, and “bail in” bonds can also be priced using the building block securities. We
leave application of this methodology to the pricing of these securities to future research.
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Defining the probability

Q(t, tk−1) ≡ Q(t < τ ≤ tk−1 |Ft ) = 1− EQ [1{τ>tk−1} |Ft
]
,

which is the risk neutral probability at time t that default occurs between times t
and tk−1, we can rewrite (8) in an another form,

vt = Lp(t, T ) [1−Q(t, T )] + (C − Lδt)
∑m

k=1 p(t, tk) [1−Q(t, tk)]
+Lδt

∑m
k=1 p(t, tk) [1−Q(t, tk−1)] .

(9)

This expression facilitates the computation utilized below. Indeed, the default-free
zero-coupon bond prices p(t, T ) for T ∈ [t, T ] are (conceptually) observable and
the intensity process embedded in the risk neutral default probabilities

Q(t, T ) = EQ
[
e−

∫ T
t λudu |Ft

]
can be estimated using historical time series data (see the diversifiable default risk
assumption below).

In addition, in this form it is easy to see that the value of this coupon bond is
not equal to the sum of the coupons and principal times the value of a collection
of zero-coupon bonds from a single risky term structure with the appropriate
maturity dates and that pay the fractional recovery rate of δt in the event of
default. Let D(t, tk) denote the time t value of such a zero-coupon bond promising
to pay a dollar at time tk for k = 1, . . . ,m. Then, using the same mathematics as
above, it can be shown that∑m

k=1CD(t, tk) + LD(t, T ) =
Lp(t, T ) [1−Q(t, T )] + (C − Lδt)

∑m
k=1 p(t, tk) [1−Q(t, tk)]

+Lδt
∑m

k=1 p(t, tk) [1−Q(t, tk−1)]
+
∑m

k=1C(m+ 1− k)δtp(t, tk)[Q(t, tk)−Q(t, tk−1)].

(10)

This expression is called the “full-coupon recovery model.” The difference between
this model and the zero coupon recovery model is that expression (10) contains
terms omitted in expression (9). The additional terms in the full-coupon recovery
model, expression (10), are the recovery values for the coupons that would have
been paid after the default date, i. e.

∑m
k=1C(m + 1 − k)δtp(t, tk)[Q(t, tk) −

Q(t, tk−1)].10 These terms are included because all cash flows are discounted using
a single risky term structure of zero-coupon bonds.

Lastly, to facilitate the estimation of the intensity process, we assume that
default risk is diversifiable in the sense of Jarrow, Lando, and Yu [27].

10This term follows because if default occurs during the time interval (tk−1, tk], the remaining
future coupons are

∑m
j=k C = (m + 1 − k)C. In the full coupon recovery model, one gets a

recovery payment on all the remaining coupons.
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Assumption. (Diversifiable Default Risk)

λ̃t(Γt) = λt(Γt)

where λ̃t(Γt) is the intensity for the Cox process under the risk-neutral probability
Q.

This assumption enables the estimation of the default intensities using histor-
ical time series data, without the need to adjust the intensity process for a default
jump risk premium. It is important to note, as discussed in Jarrow, Lando, and
Yu [27], that this assumption does not imply that risky coupon bonds earn no risk
premium. Quite the contrary. If the state variables Γt driving the default process
represent systematic risk, which is the most likely case, then risky coupon bond
prices necessarily earn a risk premium due to the bond price’s correlation to Γt.
The diversifiable risk assumption just states that the timing of the default event
itself, after conditioning on Γt, is diversifiable in a large portfolio. Alternatively
stated, in a poor economy all firms are more likely to default. But, the timing
of which firms actually default depends on the idiosyncratic risks of the firm’s
management and operations.

To estimate the default probabilities, we use a proportional hazard rate model
(see Fleming and Harrington [19], p. 126), i.e. we assume that

λt(Γt) = θeφΓt

where θ is a constant and where φ is a vector of constants. Recall that Γt =
(Γ1(t), . . . ,Γm(t))′ ∈ Rm are a collection of stochastic processes characterizing the
state of the firm and the market at time t. For an application of such a hazard
rate model applied to corporate default probabilities see Chava and Jarrow [10].

3.4 A Liquidity Discount

Corporate bond markets are illiquid relative to Treasury bonds or exchange traded
equities. This illiquidity implies that corporate bond prices may reflect a liquid-
ity discount (see Jarrow and Turnbull [31], Duffie and Singleton [17], Cherian,
Jacquier, and Jarrow [11]). To incorporate such a liquidity discount, we use the
discount function eαt(T−t) to discount the zero-recovery zero-coupon bond com-
ponent securities that compose a risky coupon bond. We do not apply a liquid-
ity discount to the default-free zero coupon bonds embedded in expression (5)
above. These correspond to the last term in expression (9). Discounting the
zero-recovery zero-coupon bonds enables similar liquidity discount impacts across
different coupon bonds issued by the same credit entity.

Given this procedure, we can rewrite the coupon bond’s value as

vliqt = Lp(t, T )eαt(T−t) [1−Q(t, T )]

+ (C − Lδt)
∑m

k=1 p(t, tk)e
αt(tk−t) [1−Q(t, tk)]

+Lδt
∑m

k=1 p(t, tk) [1−Q(t, tk−1)]

(11)
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where αt is Ft - measurable. The Ft measurability of the liquidity parameter αt
implies that the market liquidity for any particular coupon bond is random. It is
important to emphasize that in the subsequent estimation, both the recovery rate
δt and the liquidity parameter αt are stochastic, hence, they can vary randomly
across time due to changing market conditions. Our estimation procedure allows
for these estimated parameter values to reflect this randomness.11 This is the
valuation model estimated in the next section.

It is important to note that transactions costs (including bid/ask spreads) are
a special case of a liquidity cost paid when trading, which are implicitly included
via a liquidity discount (see Cetin, Jarrow and Protter [9] for the theoretical jus-
tification of this statement). Similarly, taxes paid on coupons and capital gains
can also be interpreted as a type of transaction cost, and hence they are implicitly
included in the liquidity discount as well.12

3.5 Comparative Statics - Misspecification Errors

In this section we build intuition for the misspecification errors when using the
full-coupon recovery model, expression (10) instead of the reduced form (zero
coupon recovery) model, expression (9). Recall that the misspecification error,
the difference between the full-coupon recovery and the reduced form models’
prices, is equal to

∑m
k=1C(m + 1 − k)δtp(t, tk)[Q(t, tk) − Q(t, tk−1)]. Note that,

as defined, the misspecification errors are always positive. We next quantify the
magnitudes of the misspecification errors and we provide a simple approximation
that allows us to relate the misspecification errors to the model’s inputs. Later,
we relate the predicted misspecification errors to patterns in the data.

Misspecification Error Determinants: Calibration and Approximation

For illustrative purposes we make the following simplifying assumptions: (1)
coupon bonds are priced on coupon dates, (2) the risk-free term structure of inter-
est rates and the term structure of default probabilities are flat13, (3) the coupon
is set so that the zero coupon recovery model’s bond price is equal to par, and (4)

11This is because we use implicit estimation at a fixed time t, and then we repeat the estimation
under a different Ft at subsequent times.

12The complication of explicitly including liquidity costs (transaction, taxes) into the model is
that different traders face different taxes and transaction costs based on their trading activities.
Consequently, to determine a market price, an equilibrium model is needed. Equilibrium models
are notoriously ladened with unrealistic assumptions. Furthermore, an argument can be made
that the marginal trader, who determines the market price, is the lowest liquidity cost trader.
Here, we note that many institutions pay small transaction costs and there do exist non-taxable
institutions that purchase corporate debt.

13The assumption of a flat term structure is for illustrative purposes only. In the empirical
implementation we use a full term structure of default probabilities, which is not assumed to be
flat.
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that there is no liquidity discount (αt = 0). This implies that the misspecification
error is fully determined by the bond’s maturity, the issuer’s default probability,
the recovery rate, and the risk-free rate. Table 1 reports misspecification errors
for the different inputs, assuming that the risk-free term structure is flat at 2%.
The par value of the bond is set to 100. As expected, misspecification errors in-
crease with the bond’s maturity, the issuer’s default probability, and the recovery
rate. For short maturity 2-year bonds, the misspecification errors are less than
0.10, while the misspecification errors are equal to or above 0.50 for the 10-year
bonds. For 30-year bonds the misspecification errors are all larger than 3.61. The
largest misspecification error is equal to 12.32 for a 30-year bond with a default
probability of 2% and a recovery rate of 80%.

The misspecification error (above), which represents the present value of the
recovery on all of the coupon payments after default, depends on the default
probability, the recovery rate, the coupon payment, and the bond’s maturity. For
the first coupon payment the present value of the expected payoff in the event
of default is equal to the discounted value of the product of the coupon rate, the
recovery value, and the probability of default, so Cδtp(t, t1)Q(t, t1). For the second
coupon, default can occur either in the first or in the second period. The present
value of the expected payoff in period one is the same as for the first coupon. The
conditional expectation at time one of the expected payoff in period two is also the
same as for the first coupon. However, this payment still needs to be discounted
back to time zero and adjusted to take into account that the firm must have
survived period one. For longer periods, a similar logic applies. It then follows
that the misspecification error is exactly proportional to the product of the coupon
payment and the recovery value. In contrast, the total misspecification error is
only approximately proportional to the error resulting from the first coupon. The
reason is that the probability of survival depends on the default probability and
because payments farther into the future will be discounted by a larger amount.

Next we consider the effect of the bond’s maturity or, equivalently, the number
of coupon payments. Ignoring discounting and the adjustment for the probability
of survival, the expected recovery payment from the second coupon is twice as
large as for the first coupon. The reason is that default on the second coupon can
happen either in the first or the second coupon period. For a bond receiving m
coupon payments the factor is thereforem(m+1)/2. This means that the approxi-
mate total error is equal to Cδtp(t, t1)Q(t, t1)m(m+1)/2. We report this predicted
error in the final column of Table 1. We also report the actual misspecification
error, which is always smaller than the predicted error. The approximate error
is very similar to the actual misspecification error, especially for short and inter-
mediate maturities and when the default probability is small. For long maturity
bonds and especially those with a high default probability and recovery rate the
approximation is too large. Later, we will use these insights to analyze the pricing
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Table 1: Full-Coupon Recovery Model Misspecification Errors

errors observed in our empirical investigation. The approximate error serves as a
reasonable predictor of the actual misspecification error expected to be observed
in the data.

To summarize, the misspecification error is zero if the recovery rate, the default
probability, or the coupon payment is zero. The error grows approximately with
the square of the number of coupon payments and is exactly proportional to the
product of the coupon payment and the recovery rate. Thus, bonds with significant
recovery values, default probabilities, and with intermediate to long maturities will
have significant misspecification errors.
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Table 2: Different Spreads on Coupon and Principal

Pricing with Two Spread Curves

Pricing bonds using the same credit spread term structure is based on the incorrect
assumption that coupons and principal have the same recovery. However, this does
not mean that spreads cannot be used to price bonds. Instead, one needs to use two
spread curves, one for discounting coupons and one for discounting the principal.
If there is a misspecification error using the coupon recovery model to price bonds,
then the two curves will be different.

Table 2 provides some illustrative examples of spread curves. We use the
same methodology as before to illustrate these spreads, varying recovery rates
and default probabilities as in the previous table. As long as there is positive
recovery, coupon spreads lie above principal spreads since the latter will be worth
more and thus are discounted by less. A higher default probability makes all
spreads higher; in the example all the spreads are approximately proportional
to the default probability. Comparing spreads, the difference for coupons and
principal is close to the product of the default probability and the recovery rate,
which follows from the misspecification error relationship we showed above, where,
for the first coupon, the misspecification error is equal to Cδtp(t, t1)Q(t, t1).

It is useful to note that the standard spread calculation, which assumes equal
seniority of principal and coupons, will result in a spread that cannot be used
to discount either cash flows with zero or positive recovery. For the former (the
coupons), the spread will be too low and for the latter (the principal) it will be
too high. Thus, using a single spread (or spread curve) to price a new bond with
a different maturity or coupon will result in misspecification errors. In addition,
using this ‘standard’ spread calculation to assess the market’s implied risk pricing
is not possible.
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4 Estimation Procedures

The details of the estimation procedures are as follows. To fit the valuation model
to market prices, we obtained traded coupon bond prices for the 454 trading
days between September 1, 2017 and June 30, 2019 using the TRACE system.
The price in the TRACE system does not represent the full amount paid for the
bond by the buyer. The full amount paid is the price plus accrued interest. We
compare the full amount paid (the present value of the bond purchase) with the
valuation model in expression (11). For each firm, we eliminated any subordinated
bonds, callable and putable bonds, structured bonds, bonds with "death puts" or a
"survivor option," and floating rate bonds from the sample. Survivor option bonds
distort bond prices both because they are issued in small amounts (typically $20
million or less per tranche) and because the value of the embedded put option
is significant. The survivor option feature has become more common in recent
years.14 Finally, to be included in our sample, the bond issue’s daily trade volume
had to exceed $50,000 (in almost every case, volume was much larger) and with at
least two bonds traded.15 We also exclude some bonds of European issuers subject
to a 2014 EU regulation allowing regulators to demand an exchange of senior debt
securities into equity. Because data assembly and cleaning costs are substantial,16

we restrict our attention to this sample.
We use the U.S. Treasury yields reported daily by the U.S. Department of

the Treasury17 and derive the maximum smoothness Treasury forward rate curves
14The largest issuers of survivor option bonds as of 2016 included General Electric, Goldman

Sachs, Bank of America, Wells Fargo, Ford Motor, HSBC Holdings, National Rural Utilities
Cooperative Finance Corporation, Dow Chemical, Prospect Capital, and Barclays PLC. A typ-
ical survivor option bond’s terms are described as follows in a recent prospectus supplement
from General Electric Capital Corporation: “Specific notes may contain a provision permitting
the optional repayment of those notes prior to stated maturity, if requested by the authorized
representative of the beneficial owner of those notes, following the death of the beneficial owner
of the notes, so long as the notes were owned by the beneficial owner or his or her estate at
least six months prior to the request. This feature is referred to as a “Survivor’s Option.” Your
notes will not be repaid in this manner unless the pricing supplement for your notes provides
for the Survivor’s Option. The right to exercise the Survivor’s Option is subject to limits set by
us on (1) the permitted dollar amount of total exercises by all holders of notes in any calendar
year, and (2) the permitted dollar amount of an individual exercise by a holder of a note in any
calendar year.”

15To ensure model convergence, for issuer-days with only two observations we also require that
the maturities are more than 270 days apart.

16It is necessary to screen out callables and survivor options, data on which is only available
in the pricing supplement. The SEC and FINRA do not maintain public access to prospec-
tus data for more than about 5 years in easily accessible form. Thus including, for example,
data from the financial crisis is not feasible. In addition, the TABB group finds a very high
frequency of errors “TABB Group analysis shows reconciliation differences in more than 20%
of new issues.” (http://www.finregalert.com/an-sec-mandated-corporate-bond-data-monopoly-
will-not-help-quality/). There are also non–trivial computational costs.

17https://www.treasury.gov/resource-center/data-chart-center/interest-
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from these data (see Adams and van Deventer [1]). Using these historical forward
rate curves, we compute the term structure of default-free zero coupon bond prices
on all dates.

The default process parameters (θ, φ) from the proportional hazard rate model
were provided by the Kamakura Risk Information Services division of Kamakura
Corporation.18 Kamakura uses a refinement of the approach employed by Chava
and Jarrow [10] to estimate these parameters that are then used to construct
the full term structure of cumulative default probabilities.19 Specifically, for each
issuer-day we calculate cumulative default probabilities from the 10-year term
structure of monthly marginal default probabilities (the monthly probability of
default conditional on no prior default) that Kamakura generates from separate
maturity-specific models. The state variables used in the Kamakura hazard rate
estimation include both firm specific and macroeconomic variables.

Given the zero coupon bond prices and the default process (above), we esti-
mate the recovery rate δt and liquidity discount factor αt for each issuer on each
day. We compared the model values (expression (11)) to the market prices using a
non-linear least squares estimation, calculated on a trade-volume weighted basis,
to solve for the best fitting values of (δt, αt). To compute expression (11), we dis-
cretized time. Then, we used the parameter estimates obtained above to simulate
and to evaluate the expectation in expression (11).20

5 Illustrations

Before moving to the full sample model estimation, this section provides evidence
that market participants are aware of the difference in seniority between principal
and coupons in default. We consider three companies that filed for bankruptcy:
Lehman, PG&E, and Weatherford International. Lehman is chosen because of
the size and importance of its bankruptcy. The latter two firms are in our sample
because each firm has a sufficient number of trades on the trade date. In each case
we focus on senior bonds, including callable bonds, because on the day bankruptcy
is announced the call option is worthless and can be ignored. We fit the reduced
form and full-coupon recovery models to the data. A useful feature of analyzing
issuer bonds after they file for bankruptcy is that market participants agree that
the default probability equals 100%. The recovery amount for the zero coupon

rates/Pages/TextView.aspx?data=yield
18See www.kamakuraco.com.
19The model underlying the default probability calculations is similar to the one used in Camp-

bell, Hilscher and Szilagyi [7, 8], who extend Chava and Jarrow [7] and Shumway [36]. Campbell
et al. show that the default probability measure is a more accurate predictor of failure than
Moody’s EDF numbers, data that have been widely used in academic studies, e.g. Berndt,
Douglas, Duffie and Ferguson [4].

20Of course, the estimation of (δt, αt) was done simultaneously with this computation.
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Figure 1: Lehman Brothers Pricing Errors

recovery model is the number of recovery units times a notional amount of $100
(par value) for each of the bonds. The recovery amount for the full-coupon recovery
model is $100 plus the dollar coupon times the number of remaining payments on
each bond, a different amount for each issue. For each issuer day and for both of
the models, we ran the regression NPV = (delta)(notional recovery amount) to
derive the recovery rate parameter and the net present values (price plus accrued
interest) for each bond.

Figures 1-3 depict the pricing errors. We order the bonds by maturity. Pricing
errors when using the reduced form model (in blue) are substantially lower than
those resulting from the full-coupon recovery model (in red). Mean absolute errors
are more than five times as large for Lehman (2.0 vs. 11.0) and almost ten times
as large for PG&E (2.1 vs. 19.7) and Weatherford International (2.6 vs. 21.0).
Running regressions of actual versus predicted prices, for all three firms the R2 ’s
are larger than 99% for the reduced form model. When using the coupon recovery
model, the R2 ’s are between 84% and 92%.

The full-coupon recovery model results in prices that are too large, especially
for bonds of longer maturities that have more coupons, which, if there were of equal
seniority, would entitle the bond holder to a recovery value. However, in default
those coupons are worthless and so any coupon paying bond would have pricing
errors that are positive as long as the model was using unbiased inputs. However,
in an attempt to fit the data, the model tries to reduce the average pricing error
resulting in bonds with short maturities being underpriced and bonds with long
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Figure 2: Pacific Gas & Electric Pricing Errors

Figure 3: Weatherford International Pricing Errors
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maturities being overpriced. The maximum errors lie between 19.6 and 37.4. It is
worth noting that average market prices are equal to 32.4 (Lehman), 78.2 (PG&E),
and 65.0 (Weatherford International) so that the maximum errors are around one
half the market price. The (negative) minimum errors are similar in size lying
between -37.2 and -14.2. In contrast, the reduced form maximum and minimum
pricing errors are much smaller. They lie between 3.9 and 9.1 and -5 and -2.7,
and so are approximately one quarter of the full coupon recovery model pricing
errors. Importantly, and in direct support of the reduced form model, reduced
form model pricing errors have no clear pattern relative to the bond’s maturity.

To summarize, Lehman, PG&E and Weatherford International’s bond prices
provide direct evidence in support of the reduced form model relative to the full-
coupon recovery model. Failing to take into account the different seniority of
coupons and principal results in substantial pricing errors, which have a predictable
pattern in line with our model.

6 A Comparative Analysis

This and the next section provide a comparative analysis of the reduced form
valuation model versus two alternatives. One is the full-coupon recovery model,
which is the traditional recovery rate model that assumes recovery on unpaid
coupons contained in expression (10). In section 3.4 we discussed determinants
of the misspecification errors for this model and we now provide a full-sample
analysis in which we calculate the model’s misspecification errors and compare
pricing errors across both models. The second model is a ratings-based valuation
model, which is a special case of the full-coupon recovery model. The ratings-
based valuation model is consistent with numerous pronouncements from the Basel
Committee on Banking Supervision [2, 3]. The assumption is that the credit
spread depends only on the rating. Relative to the full-coupon recovery model,
which restricts the spread to be the same for coupons and principal, the ratings
model also assumes a constant spread across maturities and for all issuers with the
same rating. To obtain the ratings-based valuation, employing all bonds of each
ratings grade, we used a non-linear least squares estimation procedure to solve for
the credit spread which, when combined with the matched-maturity U.S. Treasury
zero coupon bond prices, produced the minimum sum of squared errors in fitting
the model’s net present value (price plus accrued interest) using expression (10)
to market prices. It is important to emphasize that by utilizing expression (10)
the ratings based approach to valuation ignores the different recovery rates on the
coupon payments received before and after default (and as discussed in Section 3
above).

After the restrictions discussed above (dropping callable bonds etc.) and hav-
ing estimated recovery and liquidity parameters, our sample consists of a little
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more than 70 thousand observations for 151 issuers. In each case we observe the
actual (invoice) price of the bond as well as the reduced form (zero coupon re-
covery) model price. In addition, we have calculated the full-coupon recovery and
the ratings model prices. The full-coupon recovery model produces different prices
only if predicted misspecification errors (see section 3.4) are non-zero. We there-
fore restrict attention to bonds with at least one coupon outstanding (maturity
larger than six months), a recovery value of at least 1%, a coupon rate equal to
or greater than 1%, and at least two observations on each issuer day satisfying
these restrictions. These are the observations for which we know that the full
coupon recovery model and the reduced form model have different prices. After
these restrictions, 49.4 thousand observations for 112 issuers remain. We perform
a comprehensive analysis of the reduced form model’s pricing errors in section 7.

Table 3 reports summary statistics. The median coupon rate is 2.9%, the
median maturity is 2.7 years, the median default probability is 0.6%, the median
recovery rate is 18%, and the median liquidity parameter is -0.1%. The first three
are inputs and the latter two are estimated using the reduced form model. The
median rating is A-.21 Using these estimates as inputs we next calculate prices
using the full-coupon recovery instead of the reduced form model. This calculation
of the misspecification error is the error that would be obtained if someone had
access to the parameters of the model but was using the incorrect model (which
assumes non-zero recovery of coupons). Results are in the second to last column
of the table. The median misspecification error is nine cents, 25% of the data
has errors larger than $0.28, and for 5% of the data the misspecification error is
larger than $1.43. The median observed net present value is equal to 100.37. As
a result, these numbers are directly comparable to those in Table 1 discussed in
Section 3.4., where we analyzed predicted misspecification errors calculated using
an approximation. Indeed, when we regress actual on predicted misspecification
errors, the coefficient is indistinguishable from one and the R2 is 71%.

These numbers are important and informative when pricing bonds. Consider
the following two examples. First, an issuer or bank intending to underwrite or
buy a new issue may want to price bonds prior to issuance. What we show is that
knowledge of the correct inputs, but using an incorrect model, can result in large
misspecification errors. Second, suppose that an investor observes a set of prices
that reflects the differences in seniority of principal and coupons today, but wants
to predict future bond prices or to price other bonds that are not traded. Again,
using the incorrect model can result in substantial errors.

Next, we compare the two models when fitting them to the data independently.
For each issuer-day, we estimate both the reduced form and the full-coupon recov-

21The sample consists primarily of investment grade bonds since many high yield bonds have
call features, all of which are excluded. An analysis of callable bonds goes beyond the scope of
this paper.
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Table 3: Pricing Error Summary Statistics

ery models. We require that there be at least four observations each issuer-day.
This restriction is imposed because there are two parameters to estimate and
including more observations decreases the flexibility of the model.22 We then cal-
culate the difference between the absolute values of the pricing errors from the
coupon recovery and the reduced form model. This error difference is reported
in the final column of Table 3. Due to the restrictions imposed on coupons, the
recovery rate, and the bond’s maturity, the two models differ and so the pricing
error differences are non-zero.

Table 4 explores the determinants of the error differences. On average the
reduced form model does a better job (also see the final column of Table 3).
Pricing errors are 4.8 cents larger with the full-coupon recovery model and the
difference is statistically significant. We expect that the (in)ability of the full-
coupon recovery model to fit the data reflects its misspecified assumption. Recall
that when estimating this model, the algorithm searches for those parameters to
maximize its fit.23 When predicted misspecification errors are small, for example

22Following the specification of our model, for each day we estimate the recovery rate and
the liquidity parameters. If we had made additional assumptions, for example that the liquidity
parameter and the recovery rate are approximately constant over some time span, we could have
increased the numbers of observations relative to the parameters. We would expect this change
to result in the reduced form model outperformance being even larger. However, as discussed
earlier, our model allows these parameters to change on a daily basis and so we do not pool
observations into larger groups.

23The examples of the issuers in bankruptcy nicely show that considering only the average
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Table 4: Regressions of Pricing Error Differences

because the default probabilities are low, there is only a small difference between
the two models and the pricing error differences will also be small. But even if
predicted misspecification errors are large, the full-coupon recovery model may
still generate lower pricing errors, for example, if the bonds in the specific firm-
day sample have very similar predicted misspecification errors. In this case the
misspecified model will be able to adjust, for example by choosing a lower recovery
rate, and the resulting pricing error differences relative to the reduced form model
will be low, albeit at the cost of biased model parameter estimates. However,
if bonds in the issuer-day sample have very different predicted misspecification
errors, for example because of a large dispersion in maturity combined with large
coupons and significant default probabilities, the full-coupon recovery model will
find it much harder to price the bonds in the sample. Here, the misspecified
model does not have sufficient degrees of freedom to match the data well. We find
evidence that supports both of these conjectures. When restricting attention to
observations in the top quartile of default probabilities, the full coupon recovery
model’s pricing error is 18 cents larger on average. The average pricing error
difference is almost the same if we focus on the quartile of observations that should
be the most difficult for the full-coupon recovery model to fit: those observations

pricing error of the full coupon recovery model misses the strong association of the pricing errors
with the bond’s maturity, a pattern that is a direct consequence of the model’s misspecification.
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with the highest issuer-day predicted misspecification error standard deviation.
Pricing error differences are large when the model predicts them to be large.

We next regress pricing error differences on the four variables that are the main
determinants of the misspecification error (recovery rate, maturity, coupon, and
default probability). The recovery rate and the default probability are highly
significant and come in with a positive sign; the maturity and coupon are insignif-
icant. Of course, these variables do not measure the dispersion of the misspeci-
fication errors, which we expect to be an important determinant of the reduced
form model’s outperformance. When we add the misspecification error standard
deviation together with the four variables, dispersion is the most significant vari-
able. The recovery rate is no longer significant and the coefficient on the default
probability is cut in half. More telling, including only the misspecification error
standard deviation explains almost the same amount of variation as compared to
including the four input variables. The R2 is 31.5% compared to 32.1%.

Next, for each of the 5,646 issuer days we regress observed prices on predicted
prices. We do this using both the reduced form and the full-coupon recovery
models. We calculate the mean squared error and the R2 differences across the
two models. The results are reported in Table 4 Panel B. The reduced form model
has, on average, a 0.027 lower mean squared error than the full-coupon recovery
model. We again find that the reduced form model’s outperformance is much
larger when the default probability is high. The MSE difference is close to four
times as large (0.104) for the highest quartile of default probability observations.
It is also very similar if we instead restrict attention to the top 25% of the predicted
misspecification error standard deviation issuer days. When the misspecification
error standard deviation is large, the MSE difference is high – the regression R2

is 43.5%. Those are the times when we expect the full-coupon recovery model to
have the most difficulty in fitting the data. The R2 differences between the two
models are also high when the default probabilities and the misspecification error
standard deviations are high. Relative to an average of 0.9%, the R2 differences
more than triples to 3.3% and 3.4% in the difficult-to-price subsamples. The error
standard deviation explains 36.5% of the variation in the R2 differences.

To summarize, this analysis provides evidence that the pricing error differences
between the two models are statistically significant, sometimes substantial, and
that the misspecified full-coupon recovery model has a much more difficult time
fitting the data when our model predicts it will. This evidence is for a sample
consisting of 96% investment grade debt (99.7% with a rating of BB+ or above)
and thus one where market participants perceive default is not imminent. As we
discussed earlier, when default has happened, differences across the models are
even higher.
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7 Times Series Comparison

We now examine the performance of the models, including the ratings-based
model, over time. Our sample included a wide variety of market conditions from
both a liquidity and volume perspective because of the Christmas, New Year’s,
Martin Luther King’s birthday and other holidays in the United States.

Figure 4 compares the R2 of a regression of prices on predicted prices between
the three valuation models. The evidence in this and the following figures makes it
immediately apparent that the ratings-based model has by far the worst fit. The
R2 for the reduced form valuation methodology, shown in blue, was higher than
the ratings based model’s R2, shown in red, on almost every trading day. The R2

advantage over the full-coupon recovery model was small in the first half of the
sample, but with exceptions, and then increased.

Figure 4: R2 Statistics

Figure 5 graphs the mean pricing errors, which show that on most trading
days, the mean pricing error was closer to zero for the reduced form valuation
approach. Pricing errors under the ratings-based valuation approach are biased
high because of highly skewed credit risk conditions among companies with the
same credit rating. The advantage of the reduced form valuation model over the
full-coupon recovery model was significant while being smaller than the advantage
relative to the ratings-based model.
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Figure 5: Mean Pricing Errors

The mean absolute pricing errors are provided in Figure 6. As depicted, the
mean absolute error was consistently largest for the ratings-based model and small-
est for the reduced form model, which also outperformed the full-coupon model
using this measure.

Figure 6: Mean Absolute Pricing Errors
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Lastly, Figure 7 provides the time series of the standard deviation of the pric-
ing errors. The pattern in error standard deviations is similar to those in mean
absolute error: the reduced form model had the best fit and the ratings-based
model the worst fit.

Figure 7: Standard Deviation of Pricing Errors

As evidenced by these comparisons, the reduced form valuation methodol-
ogy provides substantially more accurate valuations than does the rating-based
methodology based on expression (10). The advantage over the full-coupon re-
covery model is smaller but consistent. As we have shown above, the difference
between the full-coupon and reduced form models becomes larger for firms in
bankruptcy or when default probabilities are high.

8 Specification Tests

This section performs specification tests of the model’s pricing errors to better
understand its goodness of fit to market prices. We do not find large and consistent
patterns in the pricing errors and so we conclude that the reduced form model is
well specified. The details of this exercise are as follows. We ran two regressions
with various independent variables on both the magnitude of pricing errors and
their absolute values. We seek to explain the sources of the pricing errors for the
full sample of 70.6 thousand observations on 454 trading days for 151 issuers. The
average pricing error over the full sample is minus $0.108 for bonds with a par
value of $100. The standard deviation of the pricing errors is $0.625. The results
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Table 5: Regressions on Reduced Form Pricing Errors

of the regression are shown in Table 5.
The regression in Table 5 explains 17.5% of the variation in pricing errors.

Dummy variables for two issuers are statistically significant in predicting pric-
ing errors: Morgan Stanley and Ford. Daily trading volume is also statistically
significant but with a coefficient that is small. However, trading volume is some-
what important for Morgan Stanley bonds with a coefficient of -0.2 cents (trading
volume is measured in millions). Years to maturity is statistically significant in
predicting the pricing error, with the errors increasing by 4.6 cents for each ad-
ditional year to maturity. The gross premium and annualized premium (gross
premium divided by years to maturity) have small or statistically insignificant ef-
fects. In contrast, the gross discount and annualized discount are more important
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Figure 8: Reduced Form Pricing Errors by Daily Volume

for the pricing error, though not the absolute error. The root mean squared error
is $0.568, 6 cents less than the simple standard deviation of the pricing error. In
summary, the impact of the predictive variables is small in magnitude.

Table 5 also contains the regression that explains the pricing error volatility by
fitting the absolute value of the pricing errors. The mean absolute pricing error is
$0.31 over the full sample with a standard deviation of mean absolute error equal
to $0.56. The results show that the dummy variables for the two firms impact
the absolute value of pricing errors: Morgan Stanley and Ford. The coefficient of
the daily volume is again significant but fairly small; the interaction with Morgan
Stanley is equal to -0.2 cents. In terms of premiums and discounts, the absolute
pricing error increases with the gross premium and annualized premium, though
the former effect is significant only at the 10% level. The root mean squared error
is $0.47, just 9 cents better than the raw standard deviation of the absolute value
of pricing error.

To visually illustrate the impact of the independent variables on the pricing
errors, Figure 8 shows that the model’s pricing error exhibits greater volatility
for bonds whose daily trading volume is well under $10 million dollars. This is
consistent with the experience of market participants.

In Figure 9, we plot the pricing errors as a function of remaining years to
maturity. Our sample consists solely of bonds with a remaining maturity of 10
years or less because the longest maturity default probabilities available were 10-
year default probabilities. The volatility of the pricing errors seems to increase
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Figure 9: Reduced Form Pricing Errors by Years to Maturity

with maturity but the median spline exhibits no large deviation from zero. Finally,
we examine the possibility of tax effects for bonds with large price premiums or
discounts. Figure 10 plots pricing errors as a function of the true market price of
the bonds. Indeed, the median spline moves upward for very high premiums over
par.

9 Conclusion

This paper derives a new and tractable coupon bond valuation model, which in-
cludes a more realistic recovery rate process that distinguishes between coupon
payments received before and after default. Our approach has several benefits:
(1) we show how to price bonds as portfolios of zero recovery zero coupon bonds,
which pay off in the event of no default, and digital recovery bonds, which pay
off in the event of default. Using this insight, the model is intuitive and straight-
forward to implement empirically. (2) Bond prices depend on only four inputs:
the risk-free term structure, the default probability term structure, the recovery
rate, and a parameter capturing liquidity. (3) We provide a simple approxima-
tion to misspecification errors resulting from using the full-coupon recovery model
rather than the reduced form model. Misspecification errors depend directly on
the coupon, recovery rate, default probability, and time to maturity, and they can
be substantial in size. (4) We show how the common practice of pricing bonds
using credit spread curves can be adapted to using two spread curves, one for
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Figure 10: Reduced Form Pricing Errors by Bond Price

coupons and one for the payment of principal.
Using a large data set of corporate coupon bond transaction prices we illustrate

the application of our model to market prices. We find that our model fits the data
well. The pricing errors between the model and market prices are small. We find
clear evidence that the reduced form model outperforms the full-coupon recovery
model, confirming the need for taking into account zero recovery on coupons. Out-
performance is large in particular when default probabilities are high and when
we expect the misspecified full-coupon recovery model having insufficient degrees
of freedom to be able to fit observed bond prices. Model outperformance is im-
mediately evident when considering bond prices of companies in bankruptcy. We
also find that the reduced form valuation approach is much more accurate ver-
sus a traditional ratings-based valuation methodology, which underlies the capital
regulations from the Basel Committee on Banking Supervision.
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