
1 Introduction
The First Workshop on Sustainable Software for Science:
Practice and Experiences (WSSSPE1, http://wssspe.
researchcomputing.org.uk/WSSSPE1) was held on

Sunday, 17 November 2013, in conjunction with the 2013
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC13, http://sc13.super-
computing.org).

Katz, D S et al 2014 Summary of the First Workshop on Sustainable Software
for Science: Practice and Experiences (WSSSPE1). Journal of Open Research
Software, 2(1): e6, pp. 1-21, DOI: http://dx.doi.org/10.5334/jors.an

* National Science Foundation, Arlington, VA, USA; Computation
Institute, University of Chicago & Argonne National Labora-
tory, Chicago, IL, USA
d.katz@ieee.org

† NORC at the University of Chicago and Illinois Institute of
Technology, Chicago, IL, USA

‡ National Evolutionary Synthesis Center (NESCent), Durham,
NC, USA

§ Argonne National Laboratory, Chicago, IL, USA
‖ Center for Computation and Technology, Louisiana State Uni-

versity, Baton Rouge, LA, USA
¶ Columbia Astrophysics Laboratory, Columbia University, New

York, NY, USA
** Scientific Computing Group, Kitware, Inc., Clifton Park,

NY, USA

†† San Diego Supercomputer Center, University of California San
Diego, La Jolla, CA, USA

‡‡ Research Software Development Team, University College
London, London, UK

§§ University of Texas at Austin, Austin, TX, USA
‖‖ University of Southern California, Los Angeles, CA, USA
¶¶ University of Illinois, Champaign, IL, USA
*** Norwegian University of Science and Technology, Trondheim,

Norway
††† Infrared Processing and Analysis Center, California Institute of

Technology, Pasadena, CA, USA
‡‡‡ University of Huddersfield, Huddersfield, West Yorkshire, UK

Corresponding author: Daniel S. Katz

ISSUES IN RESEARCH SOFTWARE

Summary of the First Workshop on Sustainable Software
for Science: Practice and Experiences (WSSSPE1)
Daniel S. Katz*, Sou-Cheng T. Choi†, Hilmar Lapp‡, Ketan Maheshwari§, Frank Löffler‖,
Matthew Turk¶, Marcus D. Hanwell**, Nancy Wilkins-Diehr††, James Hetherington‡‡,
James Howison§§, Shel Swenson‖‖, Gabrielle D. Allen¶¶, Anne C. Elster***, Bruce
Berriman††† and Colin Venters‡‡‡

Keywords: sustainability; software development; policy; career paths

Challenges related to development, deployment, and maintenance of reusable software for science are
becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability
of software upon which their works are built. To highlight some of these issues and share experiences,
the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1) was held
in November 2013 in conjunction with the SC13 Conference. The workshop featured keynote presenta-
tions and a large number (54) of solicited extended abstracts that were grouped into three themes and
presented via panels. A set of collaborative notes of the presentations and discussion was taken during
the workshop.
 Unique perspectives were captured about issues such as comprehensive documentation, development
and deployment practices, software licenses and career paths for developers. Attribution systems that
account for evidence of software contribution and impact were also discussed. These include mechanisms
such as Digital Object Identifiers, publication of “software papers”, and the use of online systems, for
example source code repositories like GitHub. This paper summarizes the issues and shared experiences
that were discussed, including cross-cutting issues and use cases. It joins a nascent literature seeking to
understand what drives software work in science, and how it is impacted by the reward systems of sci-
ence. These incentives can determine the extent to which developers are motivated to build software for
the long-term, for the use of others, and whether to work collaboratively or separately. It also explores
community building, leadership, and dynamics in relation to successful scientific software.

Journal of
open research software

http://wssspe.researchcomputing.org.uk/WSSSPE1
http://wssspe.researchcomputing.org.uk/WSSSPE1
http://sc13.supercomputing.org
http://sc13.supercomputing.org
http://dx.doi.org/10.5334/jors.an
mailto:d.katz@ieee.org

Katz et al: Summary of the First Workshop on Sustainable Software for ScienceArt. e6, page 2 of 21

Because progress in scientific research is dependent
on the quality of and accessibility to software at all lev-
els, it is now critical to address many challenges related
to the development, deployment, and maintenance
of reusable software. In addition, it is essential that
scientists, researchers, and students are able to learn
and adopt software-related skills and methodologies.
Established researchers are already acquiring some of
these skills, and in particular a specialized class of soft-
ware developers is emerging in academic environments
as an integral part of successful research teams. This
first WSSSPE workshop provided a forum for discussion
of the challenges around sustaining scientific software,
including contributed short papers in the form of both
positions and experience reports. These short papers, as
well as notes from the debates around them, have been
archived to provide a basis for continued discussion, and
have fed into the collaborative writing of this report.
Some of the workshop submissions have been extended
to full papers, which form part of the same special jour-
nal edition in which this report appears. The workshop
generated a high level of interest; an estimated 90 to
150 participants were in attendance at different times
of the day. The interest and discussions have already
led to follow-up activities: A smaller Python-specific
workshop is planned to be held at the 2014 SciPy con-
ference, and a follow-on WSSSPE2 workshop has been
accepted for the SC14 conference. In addition, funds to
support the workshops have been obtained from the
US National Science Foundation (NSF) and the Gordon
and Betty Moore Foundation, and the original workshop
website has been turned into a community website to
engender further discussion and progress. Additionally,
a minisymposium at the 2014 Society for Industrial
and Applied Mathematics (SIAM) Annual Meeting on
“Reliable Computational Science” (SIAM AN14, http://
meetings.siam.org) is being co-organized by a WSSSPE1
participant to further explore some of the key issues
raised at the workshop.

This report attempts to summarize the various aspects
of the workshop. The remainder of this paper first gives
an overview of the process with which the workshop was
organized (§2), then proceeds with summaries of the two
keynote presentations (§3), followed by summaries of the
workshop papers grouped by the three thematic work-
shop panels to which they were assigned (§4–6). Three
broader cross-cutting issues surfaced repeatedly, and are
discussed separately (§7), as are use cases for sustainable
software (§8). The summaries are based not only on the
papers and panel presentations, but also on the many
comments raised in both the onsite and online discus-
sions that accompanied the workshop elements, as doc-
umented by collaborative note taking during the work-
shop [1]. We conclude with issues and lessons learned,
as well as plans for future activities (§9). The original call
for papers is included in Appendix A. The short papers
accepted to the workshop are listed in Appendix B, and
a partial list of workshop attendees can be found in
Appendix C (see supporting information).

2 Workshop Process and Agenda
WSSSPE1 was organized by a relatively small group of five
organizers and a larger program committee of 36 members.
The program committee peer-reviewed submissions, but
also had early influence in the workshop’s organization,
such as articulating the Call for Papers (see Appendix A).

Aside from setting the stage for the relevance of soft-
ware sustainability and corresponding training and work-
force issues to science, the call for papers enumerated
the topics it was interested in as challenges to the eco-
system of which scientific software is a part, and in which
software developers, users, and funders hold roles. These
challenges roughly followed NSF’s Vision and Strategy for
Software [2], and specifically included the development
and research process that leads to new (or new versions of
existing) software; the support, community infrastructure,
and engineering for maintenance of existing software; the
role of open source communities and industry; aspects of
the use of software, such as reproducibility, that may be
unique to science; policy issues related to software sus-
tainability such as measuring impact, giving credit, and
incentivizing best practices; and education and training.

The workshop’s goal was to encourage a wide range
of submissions from those involved in software prac-
tice, ranging from initial thoughts and partial studies to
mature deployments. Consequently, the organizers aimed
to make submission as easy as possible. Rather than
requiring adherence to a formal submission system and
a full research paper-style template, submissions were
intentionally limited to short 4-page papers, articulating
either a position on one or more of the topics, or reporting
experiences related to them. Furthermore, for submission
authors were asked to self-archive (and thus self-publish)
their papers with a third-party service that issues persis-
tent identifiers, such as Digital Object Identifiers (DOIs),
and to then submit the URL to the archived paper by
email. This had the side effect that every submitter would
also have a publicly available and citable version of their
workshop contribution.

This process resulted in a total of 58 submissions. Almost
all submitters used either arXiv [3] or Figshare [4] to
archive their papers. The submissions were then subjected
to peer review by the program committee, resulting in 181
reviews, an average of 3.12 reviews per paper. Reviews were
completed using a Google form, which allowed reviewers
to choose papers they wanted to review, and to provide
general comments as well as relevance scores to the organ-
izers and to the authors. Based on the review reports, the
organizers decided to list 54 of the papers (see Appendix B
for a full list) as significant contributions to the workshop.
The high acceptance rate may come as a surprise, but it
is nonetheless consistent with the goal of fostering broad
participation, and as a corollary of the chosen submission
process paper acceptance was no longer a means to filter
the papers’ public availability.

Roughly following the call for papers topics, the
accepted submissions were grouped into three main cate-
gories, namely Developing and Supporting Software, Policy,
and Communities. Each category was assigned to a panel,

http://meetings.siam.org
http://meetings.siam.org

Katz et al: Summary of the First Workshop on Sustainable Software for Science Art. e6, page 3 of 21

with three to four panelists drawn from authors of the
associated submissions, who were each assigned to read
and summarily present a subset of the papers associated
with the panel. The process from organizing and advertis-
ing the workshop, to collecting and reviewing the papers,
and putting together the agenda was documented by the
organizers in a report [5], which they self-archived in the
same way as contributed papers.

The workshop received submissions from eight North
American and European countries. In some instances
authors collaborated across multiple countries towards
jointly authored papers. A majority of contributions came
from the US with 42 papers where at least one author was
affiliated with a US institution. A total of 10 submissions
were from Europe and 4 were from Canada. This is not
surprising for a workshop being held in the US. We believe
future versions of the workshop will have contributions
from more countries and more continents.

In terms of subject of the papers, the submissions
were dominated by the domain of practice of sustainable
software engineering and management with about 32
papers based on these themes. These papers were further
based on a variety of disciplines including infrastructure
and architecture, user engagement, and governance.
Additionally, 18 papers were based on the sciences and
applied mathematics domains with disciplines including
High Energy Physics, Bioinformatics, Nanotechnology,
Chemistry, and material sciences. Others were included
topics such as science gateways and visualization. Again,
given that this workshop was held with a computer and
computational science conference, these numbers are
not surprising.

The workshop also included two keynote presenta-
tions. Remote participation was facilitated by a live-cast
of keynotes and panels via Ustream.tv (http://ustream.
tv). In each panel, the paper summary presentations were
followed by active discussion involving panelists, onsite
attendees, and often online participants. The latter was
facilitated by having a shared Google Doc [1] for collabo-
rative note taking. Some of the online discussion also took
place on Twitter (hashtag #wssspe).

3 Keynotes
The WSSSPE1 workshop began with two keynote presen-
tations, which resonated with the audience and spurred a
number of topics discussed throughout the meeting.

3.1 A Recipe for Sustainable Software, Philip E. Bourne
The first keynote [6] was delivered by Philip E. Bourne of
University of California, San Diego. Bourne is a biomedi-
cal scientist who has also formed four software compa-
nies. He co-founded PLOS Computational Biology [7] and
helped develop the RCSB Protein Data Bank [8]. He is
working on automating three-dimensional visualizations
of cell contents and molecular structures, a problem that
has not been solved and when done, would serve as a key
function of software in biomedical sciences.

Bourne’s presentation was based on his own software
experiences. He emphasized that sustainability for software

“does not just mean more money from Government” (see
also Section 7.1). Other factors to consider, he mentioned,
encompass costs of production, ease of maintenance, com-
munity involvement, and distribution channels.

In places, Bourne said, development in science has
improved thanks to open source and hosting services like
GitHub [9], but for the most part it remains arcane. He
argued that we can learn much from the App Store model
about interfaces, ratings, and so on. He also mentioned
BioJava [10] and Open Science Data Cloud [11] as distri-
bution channels. On a related note, Bourne observed a
common evolutionary pathway for computational biology
projects, from data archive to analytics platform to educa-
tional use, and suggested that use of scientific software
for outreach might be the final step.

Bourne shared with the audience a few real challenges
he encountered. His first anecdote was that he has looked
into reproducibility in computational biology, but has
concluded that “I have proved I cannot reproduce research
from my own lab” [12].

Another problem Bourne experienced was staff reten-
tion from private organizations which reward those
combining research and software expertise (the “Google
Bus”). However, he is a strong supporter of software sus-
tainability through public-private partnerships. He noted
that making a successful business from scientific software
alone is rare: founders overvalue while customers under-
value. He noted that to last, an open source project needs
a minimal funding requirement even with a vibrant com-
munity — goodwill only goes so far if one is being paid
to do something else. He talked about grant schemes of
relevance in the U.S., particularly with regard to technol-
ogy transfer [13, 14].

Bourne also had problems with selling research soft-
ware: the university technology transfer office wanted
huge and unrealistic intellectual property reach through,
whereby they would get a share of profits from drugs
developed by pharmaceutical companies who use the
software. He advocated for a one-click approach for cus-
tomers to purchase university-written software.

He then presented arguments on directly valuing soft-
ware as a research output alongside papers, a common
discussion within this field. He mentioned an exploration
of involving software engineers in the review process of
scientific code [15], and discussed how publishing soft-
ware reviews could change attitudes.

On the notion of digital enterprise, where information
technology (IT) underpins the whole of organizational
activities, he contended that universities are way behind
the curve. In particular, he highlighted the separation of
research, teaching, and administration into silos without a
common IT framework as a blocker to many useful organi-
zational innovations: “University 2.0 is yet to happen.” He
argued that funders such as NSF and NIH can help train
institutions, not just individuals, in this regard.

Bourne concluded by discussing his 2011 paper “Ten
Simple Rules for Getting Ahead as a Computational Biologist
in Academia” [16] and argued that computational scien-
tists “have a responsibility to convince their institutions,

http://Ustream.tv
http://ustream.tv
http://ustream.tv

Katz et al: Summary of the First Workshop on Sustainable Software for ScienceArt. e6, page 4 of 21

reviewers, and communities that software is scholarship,
frequently more valuable than a research article”.

3.2 Scientific Software and the Open Collaborative
Web, Arfon Smith
The second keynote [17] was delivered by Arfon Smith of
GitHub. Smith started with an example from his past in
data reduction in Astronomy, where he needed to remove
interfering effects from the experimental apparatuses. He
built a “bad pixel mask,” and realized that while it was
persistent, there was no way or practice of sharing these
data among scientists. Consequently many researchers
repeated the same calculations. Smith estimated that
plausibly 13 person-years were wasted by this repetition.

“Why didn’t we do better?” Smith asked of this practice.
He argued this was because we were taught to focus on
immediate research outcomes and not on continuously
improving and building on tools for research. He then
asked, when we do know better, why we do not act any
different. He argued that it was due to the lack of incen-
tives: only the immediate products of research, not the
software, are valued. He referenced Victoria Stodden’s talk
at OKCon [18] which he said argued these points well.

C. Titus Brown [19], a WSSSPE1 contributor, argued
that with regard to reusable software, “we should just
start doing it.” Smith replied that documentation should
be “treated as a first class entity.” He noted that the open
source community has excellent cultures of code reuse, for
example, RubyGems [20], PyPI [21], and CPAN [22], where
there is effectively low-friction collaboration through the
use of repositories. This has not happened in highly numer-
ical, compiled language scientific software. An exception
he cited as a good example of scientific projects using
GitHub is the EMCEE Markov Chain Monte Carlo project
[23] developed by Dan Foreman-Mackey and contributors.

He argued that GitHub’s Pull Request code review
mechanism facilitates such collaboration, by allowing
one to code first, and seek review and merge back into
the trunk later.

“Open source is …reproducible by necessity,” Smith
quoted Fernando Perez [24], explaining that reproducibil-
ity is a prerequisite for remote collaboration. He pointed
out that GitHub could propel the next stage of web devel-
opment, i.e., “the collaborative web,” following on from
the social web of Facebook.

In conclusion Smith reiterated the importance of estab-
lishing effective incentive models for open contributions
and tool builders, for example, meaningful metrics and
research grants such as [2]. He urged computational scien-
tists to collaborate and share often their research reports,
teaching materials, code, as well as data by attaching
proper licenses.

4 Developing and Supporting Software
The panel on Developing and Supporting Software exam-
ined the challenges around scientific software develop-
ment and support, mainly focused on research groups that
in addition to pursuing research also produce code in vari-
ous forms. There was widespread agreement that develop-
ing and maintaining software is hard, but best practices

can help. Several participants added that documentation
is not just for users, and writing application programming
interface (API) documentation, tutorials for building and
deploying software, together with documented develop-
ment practices can be very helpful in bringing new devel-
opers into a project.

Two subjects that prominently surfaced in this panel
also came up throughout other parts of the workshop,
and are therefore deferred to the section on Cross-cutting
Issues (§7). These are the lack of long-term career paths for
specialists in the various software development and sup-
port areas (see §7.2), and the question of what “sustain-
able” should mean in the context of software (see §7.1).

4.1 Research or Reuse?
Software is developed for many different purposes, and
the requirements can vary significantly depending on the
intended audience. Most end-users make use of either a
graphical user interface of some kind, or a command line
that may offer input and output formats for running the
code and analyzing its output(s). When discussing back-
ward compatibility it is these various interfaces that are
discussed. For software that builds on other software
frameworks it is the APIs that are most important, and
this can encompass issues such as the source and binary
interfaces to the software libraries developed—with
each potentially having a high maintenance cost if they
are to remain compatible over many years. When using
command-line programs it is generally the command-line
switches as well as the input/output formats that could
incur significant costs if they are changed.

There was discussion that backward compatibility is not
always desirable, and it can be very costly. This must be
balanced with the aims of a given project, and how many
other projects depend on and use the code when back-
wards incompatible changes are to be made. There are
many examples in the wider open source software world
of strategies for dealing with this, and again best practices
can go a long way to mitigating issues around backwards
compatibility. Many projects live with sub-optimal code
for a while, and may allow backwards compatibility to
be broken at agreed-upon development points, such as a
major release for a software library.

There were 13 articles about different experiences in
this area, but little about GUI testing, performance, scal-
ability, or agile development practices. There were several
unique perspectives about issues such as managing API
changes, using the same best practices for software as
data, and going beyond simply “slapping an OSI-approved
license on code.”

It should be noted that several articles that discussed
long-term projects, that could be said to have reached a
sustainable period. The Visualization Toolkit (VTK) was
described [25] as being one of the oldest projects serving
as a basis for several other tools such as ParaView [25],
VisIt [26], and VisTrails [27]. Other examples of long-
term, sustainable projects included MVAPICH [28] and
R/qtl [29], which both began development in 2000, and
DUNE [30], which is also over a decade old. In addition
to how long a project has been active, other metrics are

Katz et al: Summary of the First Workshop on Sustainable Software for Science Art. e6, page 5 of 21

important, such as number of developers, number of insti-
tutions, and whether there are active developers acting as
advocates for the continued viability of a project beyond
individual projects and/or institutions.

4.2 The Importance of Communities
Communities are extremely important in software pro-
jects, and both their building and continued engage-
ment need attention during the project life cycle. Several
of the submitted papers discussed how communities
have been built around projects, and what is needed to
enable a project to grow [31, 25, 32, 33, 34]. The latter
includes public source-code hosting, mailing lists, docu-
mentation, wikis, bug trackers, software downloads, con-
tinuous integration, software quality dashboards, and of
course, a general web presence to tie a project’s channels
and artifacts together.

There was extended discussion about the challenge of
fostering communities in which users help each other,
rather than always deferring to the developers of project
to answer user queries. Participants offered examples
that this is indeed possible, such as mailing lists in which
developers do not participate much because users actively
respond to questions from other users, but also asked
whether by doing too much the “core team” could end
up setting unrealistic expectations. Team Geek [35] and
Turk’s paper on scaling code in the human dimension [36]
discuss how development lists tend to have many more
people contributing when they are welcoming to people.

4.3 Software Process, Code Review, Automation,
Reproducibility
The papers submitted to this panel included many gen-
eral recommendations for processes, practices, tools,
etc. One of the papers [37] suggested that a “Software
Sustainability Institute” should be vested with the author-
ity to develop standardized quality processes, a common
repository, central resources for services and consulting, a
think tank of sorts, and a software orphanage center (i.e.,
a place to ‘take care’ of software when the original devel-
opers have stopped doing so). The idea of one common
repository received some resistance, with so many com-
pelling alternatives available, e.g., Bitbucket or GitHub.
The centralized communication or point of contact was
seen as reasonable, with the statement that “vested with
authority” is perhaps too strong. However, “providing
tools if needed” might be more appropriate.

What about actual software engineering principles,
such as modularity and extensibility? This is how indus-
try maintains software, and ensures it continues to be
useful. Often, rewriting software is considered to be too
costly, but with a modular design it can be kept up to
date. Extensibility is expected to keep it relevant, if built
into the project. One counterpoint raised by Jason Riedy
was that trying to take advantage of the latest and great-
est hardware often makes this painful, hence the lack of
papers mentioning “GPUs and exotic hardware.”

The question of whether funders, such as the NSF, can
mandate software plans in much the same way as they do
data management plans, was raised. Daniel Katz responded

that software is supposed to be described as part of the
NSF data management plan, and that in NSF’s definition,
data includes software. A comment from Twitter (@biom-
ickwatson) raised the issue that this requires reviewers
and funders who understand the answers that are given
in these plans. Daniel Katz responded that in programs
focused on software or data this can be done effectively,
but agreed that in more general programs this is indeed
a problem.

4.4 Training Scientists to Develop and Support
Software
Part of the panel discussion focused around community
structures and how academic communities are not taught
how to evaluate cross-disciplinary work. One question
raised was whether software developers can be effective if
they are not part of the appropriate domain community,
with responses that this depends on the specific prob-
lem and situation, and that “T-shaped” people who have
both disciplinary depth as well as interdisciplinary and
collaboration skills are important [38, 39, 40]. The discus-
sion focused on whether we could teach software devel-
opers and domain scientists to collaborate together more
effectively rather than trying to teach software developers
about domain science and domain scientists about soft-
ware development practices. The end goal of this would
be to have a single community with a spectrum of exper-
tise across domain science and software development,
rather than two separate communities [41].

The role of the growing field of team science with soft-
ware development was discussed. Team science deals with
understanding and improving collaborative and team-
based scientific research, and issues such as virtual organi-
zations, and tool development across software develop-
ment communities [32, 33]. Further, how should these
skills and best practices then be introduced to students?

4.5 Funding, Sustainability Beyond the First Grant/
Institution
Are there significant differences in projects that have
been running for 1, 3, 5, or 10+ years? Are there shared
experiences for projects of a similar stage of maturity?
It was noted that computing and communication have
changed significantly over the past decade, and many
of the experiences are tied to the history of computing
and communication. See the history of GCC, Emacs, or
the Visualization Toolkit for examples. Others felt that
computing has changed less, but communication and
the widespread availability of tools has. It was noted that
email lists, websites, chat rooms, version control, virtual
and physical meetings are all over 20 years old.

It appears that while some of the basics of computing
may be similar, the tools commonly used for computing
have changed quite significantly. Reference was made to
Perl, which was commonly used, giving way to whole new
languages, such as Python, for gluing things together and
how this induces many students into entirely rewriting
the scaffolding, leaving the old to rot and the experi-
ments to become non-reproducible as the tools change.
There was discussion of this tendency along with the

Katz et al: Summary of the First Workshop on Sustainable Software for ScienceArt. e6, page 6 of 21

enormous differences in the speed and ease of sharing—
having to ship tapes around in the early days of software
development (which shaped development of GCC and
Emacs in their formative years) as opposed to the imme-
diate sharing of the latest development online, using revi-
sion control systems like CVS, Subversion, Git, Mercurial,
Bazaar, etc.

The question was also posed as to whether the dis-
tinction between researcher and developer is sensible,
with James Hetherington commenting that in the UK a
more nuanced view of research software engineers and
researcher developers is examined. Should this be less of
a contract relationship, and more of a collaborative rela-
tionship? This is also at the core of the business model
that Kitware presented in its submission to the workshop.
Are other ingredients missing such as applied mathemati-
cians? Should this be defined more in terms of skill sets
rather than roles and/or identities? This builds on the
comments from Vaidy Sunderam that scientists are gen-
erally good writers, and have mathematical skills, so why
can’t they learn software engineering principles?

Miller commented that all of the infrastructure that
sits around a new algorithm that we need to make it use-
ful and sustainable requires different skill sets than the
algorithm developer. Friere commented that there are no
good career paths for people with broad skills, no incen-
tives for them to continue in these roles. There was debate
around people doing what interests them, and learning
computing leaves people cold, but is it that it leaves the
people who find career paths in academia cold versus the
full spectrum of people involved in research? Is this also
caused by poor teaching, or because the benefits for doing
this are perceived as too small? It could also be attributed
to their focus being on science, not software engineering,
or do people with the passion for software engineering in
science simply have no viable career path and either adapt
or seek out alternate career paths?

5 Policy
The panel on policy discussed workshop contributions
dealing with the wide range of software sustainability
aspects that relate to establishing, promoting, and imple-
menting policies. Six papers presented frameworks for
defining, modeling, and evaluating software sustainabil-
ity, the basis of establishing policies. Four papers advo-
cated mechanisms for more properly assessing the impact
of scientific software, and for crediting and recognizing
work that promotes software sustainability, all of which
are instrumental in effectively promoting policies that
aim to change current practices. Four papers discuss fac-
ets of implementing software sustainability, and models
of implementation across different facets.

5.1 Modeling Sustainability
The workshop submissions grouped under this section
provide frameworks for thinking about, researching, and
understanding which elements of sustainability are impor-
tant and how they are related to each other. Although
there is substantial overlap between the frameworks, they
have different emphases and extents. Each paper in this
group included a definition of sustainability, with many
overlaps between them (see Table 1). Perhaps unsurpris-
ingly, the issue of how to define sustainability came to the
fore multiple times during the workshop, and it is thus
summarized in depth separately in §7.1.

Table 1 is based on a summary by Lenhardt [42], which
shows for each contribution to the Modeling Sustainability
panel what it meant when referring to software, how it
defined software sustainability, and which approach it
suggested to understand or evaluate sustainability.

One area in which there was not complete overlap was
whether the word (and thus the effort called for by the
WSSSPE workshop) involved environmental sustainability.
Of course the word sustainability has strong connotations
from consideration of environmental issues, evoking some

Paper/Authors Software Sustainability Approach to Understand or
Evaluate Sustainability

Calero, et al. [43] General notion of software. Not
explicitly defined.

Sustainability is linked to
quality.

Add to ISO

Venters, et al. [44] Software as science software;
increasingly complex; service-
oriented computing

Extensibility, interoperability,
maintainability, portability,
reusability, scalability,
efficiency

Use various architecture evaluation
approaches to assess sustainability

Pierce, et al. [45] Cyberinfrastructure software Sustainable to the extent to
which there is a community to
support it

Open community governance

Katz, et al. [46] E-research infrastructures (i.e.
cyberinfrastructure)

Persisting over time, meeting
original needs and projected
needs

Equates models for the creation of
software with sustaining software

Lenhardt, et al. [47] Broadly defined as software
supporting science

Re-use; reproducible science Comparing data management life
cycle to software development life
cycle

Weber, et al. [48] Software broadly defined; a
software ecosystem

Software niches Ecological analysis and ecosystem

Table 1: Summary of Modeling Sustainability papers from Policy Panel. Adapted from [42].

Katz et al: Summary of the First Workshop on Sustainable Software for Science Art. e6, page 7 of 21

mention of the areas in which software interacts with
overall environmental resource usage, particularly energy
efficiency. The two papers in this area which mentioned
this [44, 43] did so without integrating that analysis into
the question of software being around long-term, suggest-
ing that questions of environmental impact of scientific
software is a conceptually distinct area of inquiry.

One group of papers presented frameworks that were
primarily about characteristics of software artifacts, con-
necting with the long discourse on software quality. This
approach is realized in adjectives that can be applied to
pieces of software but might also extend to describe soft-
ware projects. Thus Calero et al. [43] propose adding ele-
ments to the ISO standards for measuring software qual-
ity. Specifically, they propose an additional dimension of
quality they call “perdurability” with three defining char-
acteristics: reliability, maintainability, and adaptability.
This overlaps with the framework by Venters et al. [44]
who employ the features “extensibility, interoperability,
maintainability, portability, reusability and scalability,”
anticipating the sorts of work that people would need to
do with a software artifact in the future, “as stakeholders
requirements, technology and environments evolve and
change.” Venters et al. argue that these choices need to be
made early because they are related to the architecture of
the software and involve trade offs that ought to be ana-
lyzed alongside each other. Lenhardt et al. [47] compare
the software lifecycle to the data lifecycle to argue for the
inclusion of metadata throughout a piece of software’s life
(discussing, for example, how it has been built and tested
and what “data in” and “data out” has been considered). In
addition, their analogy suggests that the software lifecy-
cle might add a phase of “preservation” and draw on the
understanding of what that involves from studies of data.
In sum, then, these frameworks focused on what needs to
be accomplished to have more sustainable software.

A second theme in these papers was the continued
availability of resources to accomplish the goals of sus-
tainability. The elements of these frameworks focused far
more on the organization of a software project than they
did on characteristics of the artifact itself (although it is
certainly true that the adjectives discussed above could
be applied to a software project). For example Pierce et
al. [45] focus on the way that the project is run, particu-
larly in terms of how those involved communicate and
jointly set priorities, a process they call governance. In
particular they argue that because sustainability is related
to having ongoing resources, governance must be open
to receive diverse input (by occurring online, asynchro-
nously, or publicly) and thus have the potential to “trans-
form passive users into active contributors.” They argue
that the Apache Software Foundation’s incubation pro-
cess teaches this and could be learned from by projects
throughout scientific software. Katz and Proctor [46] also
discuss governance, describing two modes: “top-down”
and “bottom-up” governance. They place governance
alongside technical questions about the software, politi-
cal questions about who is funding the work surrounding
the software, and the manner in which resources come
to the project both initially (commercial, open source,

closed partnerships, grant funded) and long-term (all four
plus paid support).

Frameworks also concerned themselves with the con-
text in which software projects exist, moving in abstrac-
tion from the software artifact itself to the organization
of its production and the shape of the space in which an
artifact or project exists. These frameworks take the form
of contingency theories in that they outline a different set
of challenges and argue that different project organiza-
tions (and presumably artifact attributes) are necessary
to persist long term in spaces with particular characteris-
tics. Katz and Proctor [46] propose thinking of this idea of
space in terms of three axes: temporal (long or short term
needs), spatial (local or global use) and purpose (specific
to general). They propose that different project organiza-
tions will be needed in different locations and argue that
we should concentrate research to understand those con-
nections. Weber et al. [48] describe their spaces by analogy
with natural ecosystems as “niches” which sustain particu-
lar pieces of software. They define “a software niche as the
set of technical requirements, organizational conditions
and cultural mores that support its maintenance and use
over time.” They call for better understanding and mod-
eling of niches (as well as further exploration of the use-
fulness of ecosystem metaphors).

5.2 Credit, Citation, and Impact
How work on scientific software is recognized and
rewarded strongly influences the motivation for particular
kinds of work on scientific software. A recurring theme of
the panel discussion was that software work in science is
inadequately visible within the reputation system under-
lying science; in other words it often doesn’t “count”. In his
paper for this workshop, Katz placed software work along
with other “activities that facilitate science but are not cur-
rently rewarded or recognized” [49]. Priem and Piwowar
argued for the need to “support all researchers in present-
ing meaningful impact evidence in tenure, promotion,
and funding applications.” [50]. Knepley et al. argued that
the lack of visibility of software that supported a piece of
science “can have detrimental effects on funding, future
library development, and even scientific careers.” [51].

These papers, and the discussion at the workshop, join
a nascent literature seeking to understand what drives
software work in science and how the reward systems of
science thereby shape the type of software work under-
taken. This study includes the extent to which developers
are motivated to build software for the long-term, for the
use of others, and whether to work collaboratively or sepa-
rately [52, 53, 54]. Software work is not only motivated by
direct citations, but the visibility of software work in the
literature is important to those who write software used
in science.

Papers and discussion concentrated on three overarch-
ing questions: How ought software work be visible, what
are the barriers to its visibility, and what can be done to
make it more visible?

Most of the papers in this area focused on visibility of
software in scientific papers, since scientific papers are the
most widely accepted documentation of achievement in

Katz et al: Summary of the First Workshop on Sustainable Software for ScienceArt. e6, page 8 of 21

science. It was noted that there appear to be no widely
accepted standards on how the use of software towards
a paper ought to be mentioned, and that journals, cita-
tion style guides and other guides to scientific conduct
are vague about how to describe software. To address
this, papers advocated the need for a fixed identifier for
software, either directly through a mechanism such as a
Digital Object Identifier [49, 51] or via a published paper
written to document the software (and perhaps its crea-
tion), a “software paper” [55]. However, as was pointed
out during the panel discussion, one of the problems with
papers as the cited product is that their author list is fixed
in time, which discourages potential contributors who are
not on the original author list from designing incremental
improvements as integration work rather than separate
(and hence possibly rewritten) software products [52].

Another approach is to reduce the difficulty of citing all
software underlying a research paper. For example, scien-
tists often work with software that itself wraps other soft-
ware, leading to attribution stacking that can make it non-
obvious or even difficult to determine what attributions
would be appropriate. Knepley et al. [51] approach this
by proposing a mechanism by which the software itself,
after it has run, provides the user with a set of citations,
according to the pieces of code actually executed. They
describe a prototype implementation whereby the cita-
tions are embedded in libraries and reported along with
the results, via a command-line interface [51]. Discussion
highlighted the difficulty that attempting to acknowl-
edge the contributions of all pieces of dependent code
within a paper faces the difficulty of creating very long
citation lists, straining the analogy of code used to papers
cited. Katz approaches this issue by proposing a system
of “transitive credit,” recording dependencies and relative
contributions outside particular papers, relieving authors
from the responsibility of acknowledging each and every
dependency. Instead authors would acknowledge the per-
centage contribution of the software they used directly
and an external system would then be able to recursively
allocate that credit to those who had provided dependen-
cies [49]. Finally Priem and Piwowar argued that machine
learning techniques could examine the body of published
literature and extract mentions of software, coping with
the multitude of informal ways in which authors mention
software they used [50]. A point raised in the panel dis-
cussion was that instead of asking users to improve their
software citation practices, one can also ask how software
projects can better monitor the literature to improve their
ability to show impact. For example, the nanoHUB project
scans the literature using keywords and names of known
users to discover papers that are likely to have used their
software and platform, and assigns graduate students to
read each paper, highlighting mentions of software use
and sometimes following up with the authors to identify
stories for demonstrating impact. A process for tracking
software-using publications with the goal of increasing
impact visibility is now described at http://publications.
wikia.com.

Potential visibility, and thus acknowledgement of sci-
entific software products is not restricted to publications.

Another key location for visibility is in the grant funding
process, and as emphasized by NSF representatives at the
meeting, recent changes to grant proposal and report-
ing formats now allow both applicants and awardees to
report and highlight software products as much as pub-
lications. Nonetheless, whether peer review panels would
value these contributions in the same way as publications
remains to be seen.

Priem and Piwowar argued that assessing the impact
of software work requires looking beyond publications,
including evidence of contribution and impact recorded
in social coding-oriented resources such as GitHub, and
conversations about software in issue trackers, mailing
lists, twitter and beyond [50]. In keeping with a principle
of the “altmetrics” approach, they advocate that scholars
should have resources that empower them to tell their
own stories in the manner most appropriate for them and
their audiences.

5.3 Implementing Policy
The workshop contributions in this group were concerned
with the aspect of how implementation of best practices
and other recommendations for improving scientific
software sustainability could be promoted. Specifically,
if scientific software is to become more sustainable, cor-
responding policies and guidelines need to be such that
the scientific community can follow and implement them.
This is considerably more challenging that it might seem
at first, because in the reality of science today resources,
both financial and personnel, that could be devoted to
implementation are very limited, and the reward system
does not encourage scientists to do so. Furthermore,
implementing sustainability-targeting policies and guide-
lines often takes a variety of specialized software engineer-
ing expertises, which are not necessarily found in a single
engineer, and much less so in a domain scientist cross-
trained in programming. Adding to the policy implemen-
tation challenges, applicable sustainability-promoting
practices and guidelines will change through a software
project’s lifecycle, in particular as it gains maturity.

Two of the papers in this group focus on specific facets
of software design that are important factors in a project’s
sustainability but are often addressed only late in the sci-
entific software development cycle, if at all: Krintz et al.
[56] look at API governance, and Heiland et al. [57] dis-
cuss maturity models for software security. The other two
papers discuss implementation strategies for science from
the perspective of facilitating many or all facets of sustain-
ability-oriented software design: Blanton and Lenhardt
[58] contrast large projects that have software infrastruc-
ture development built-in, with cross-training domain sci-
entist PIs in software engineering best practices. Huang
and Lapp [59] discuss how various specialized software
engineering skills could be turned into shared instrumen-
tation with low barriers to access.

Krintz et al. [56] describe how in an era in which com-
puting frequently takes place in a distributed cloud, the
control over digital resources is increasingly shifting from
physical infrastructure to APIs, in particular web-service
APIs. Yet, as Krintz et al. observe, unlike for physical IT

http://publications.wikia.com
http://publications.wikia.com

Katz et al: Summary of the First Workshop on Sustainable Software for Science Art. e6, page 9 of 21

infrastructure in data centers, science communities have
developed very little in the way of practices and technol-
ogy for API governance, referred to by Krintz et al. as the
“combined policy, implementation, and deployment con-
trol”. Web APIs can and do change, sometimes quite fre-
quently, raising the need to port dependent applications.
The effort required for porting is notoriously difficult to
estimate, making it nearly impossible for IT organizations
to assess and thus properly manage the impact of API
changes. To address this, Krintz et al. propose a mechanism
that evaluates the porting effort between two versions of a
web-service API in a formal and automated way. To analyze
the porting effort, they divide API changes into syntactic
similarity, the changes in inputs and outputs, and into
semantic similarity, the changes in the API’s behavior. In
initial tests, their method showed good congruence with
human developers in scoring porting effort, offering the
possibility that API governance can become as solid a part
of scientific IT management as data center infrastructure
management is today.

Many facets of engineering for software sustainability
strongly depend on the maturity level of the software.
However, the maturity level of a software project meant
to be sustained changes tremendously over its develop-
ment life cycle, and the eventual maturity level is often
difficult to predict during initial development. Using soft-
ware security as their case study, Heiland et al. [57] dis-
cuss how Maturity Models can be used to formalize best
practices appropriate for the different levels of maturity
that a software project may go through over its lifecy-
cle. Cybersecurity is also an example of a sustainability-
relevant aspect in software design that is rarely given
due diligence in science. In particular in industry, cyber-
security best practices for different stages of life cycle
and maturity have been formalized as Software Security
Maturity Models, and are widely used, yet awareness of
these among scientific software development communi-
ties remains low. In providing a path to tightening security
practices as software matures, such models align with the
objective of providing implementation approaches that
the scientific community can actually follow.

API governance and cybersecurity measures appropriate
for a project’s maturity are all but two facets of sustainabil-
ity-oriented software development. Others include user-
centered interface design, test engineering, dependency
management, and deployment operations. Each of these
facets requires specialized skills and training in software
engineering. How can the implementation of best prac-
tices and guidelines along many or all of these different
facets be facilitated in scientific software development?
Blanton and Lenhardt [58] contrast two models. In one,
the time and personnel devoted to software engineering
is “co-funded” with the driving science project. This typi-
cally implies large multi-year collaborative projects that
to succeed require significant software infrastructure to
be built, and which thus have the funding to support one
or several software engineers. The sustainability of such
projects then depends on sustaining the funding. In the
other model, domain scientists also take the role of soft-
ware developers, whether by necessity such as funding

limitations, or due to cross-disciplinary professional inter-
ests. For this to result in sustainable software products,
the domain scientists need to be (or become) cross-trained
in software engineering standards and best practices.

In practice, there are example for both extremes of
the spectrum. For example, in the life sciences the iPlant
Collaborative [60], the Galaxy Project [61], and Qiime
[62] are large multi-year projects with significant soft-
ware infrastructure funding and deliverables. Typically
though these are the exception rather than the rule, and
particularly in the long tail of science the scientist-devel-
oper predominates, even for software that is widely used
or crosses domain boundaries such as rOpenSci [63]. For
better training domain scientists at least in basic software
engineering best practices, initiatives such as Software
Carpentry [64] have demonstrated how this could be
achieved at scale.

However, there may also be a middle ground between
the two extremes. Huang and Lapp [59] propose a Center
of Excellence model that leverages economies of scale to
make software engineering experts and their skills acces-
sible to the long tail of science. As Huang and Lapp dis-
cuss, this model could effectively turn the utilization of
software engineering expertise from a complex human
resource recruitment and management challenge, to buy-
ing time, when and to the extent needed, on shared instru-
mentation. There is precedence to using such a model to
lower access barriers for long tail science, in particular for
new experimental technologies. For example, although
the acquisition and operation of next-generation high-
throughput DNA sequencers requires substantial invest-
ments of money, time, and expertise, the establishment
of “core facilities” on many university campuses has made
these technologies accessible to a wide swath of scientists,
with transformative results for science.

One of the important conclusions from this group of
papers is that creating sustainable software requires paying
attention not to one or two, but to several different facets of
software engineering, each with corresponding best prac-
tices and standards of excellence. Even if a science project
requires and has funding for a full software engineering
FTE, what the project really needs could be fractions of dif-
ferent engineers with different specialty training. The vast
majority of long tail science projects lacks the funding for
even one full software engineer, let alone one who com-
bines expertise in all of the applicable facets of engineering.
Some scientists in the long tail will have the professional
interests to cross-train enough in software engineering to
be successful with creating sustainable software, but it is
unrealistic to expect this expertise and interest of all or even
the majority. This is where a software engineering center of
excellence could provide a critical resource by enabling sci-
entists in the long tail to complement their resources and
expertise with facets that are missing, but which, if applied
at the right time, would improve the chances of a software
product to become sustainable. Such complementary
expertise also need not be restricted to software engineer-
ing in the strict sense; for example, it could consist of com-
munity building, leadership, and support for some period
of transition to sustainability.

Katz et al: Summary of the First Workshop on Sustainable Software for ScienceArt. e6, page 10 of 21

In summary, implementing software sustainability
practices on a broader basis requires on the one hand the
development of guidelines and practices that are suitable
for the exploratory research context in which most scien-
tific software is created, and on the other hand a skilled
workforce trained in a variety of software engineering fac-
ets and community building. The capabilities afforded by
such a workforce need to be accessible not only to large
projects with sufficient funding to provide competitive
employment, but also to the many smaller projects in the
long tail of science. Sufficiently cross-training domain sci-
entists could be one way to achieve this; another, comple-
mentary approach is to instrument the necessary capabili-
ties so they can be shared.

6 Communities
Across all talks and papers submitted, authors implicitly
and explicitly recognized the concept of “communities”
as a driving and unifying force within software projects.
Despite that, the actual nature of the communities, the
incentive structures that bind them together, the infra-
structure they utilize for communication and even the
types of individuals that make up those communities
were different. Some of these communities were primar-
ily composed of members of industry, some were funded
and driven by individuals focused on developing software
as opposed to utilizing it, and others were primarily com-
posed of scientist practitioners, and were true communi-
ties of practice.

These varying structures and compositions result in dif-
fering modes of interaction within communities, styles
of development, and the structure of planning for future
development of software. In this section, we summarize
the different types of communities in scientific software
as well as the resultant impact on sustainability and devel-
opment of functionality.

6.1 Communities
Drawing on experiences from high-energy physics, Vay et
al. [65] proposed developing teams of technical special-
ists to overcome a lack of coordination between projects.
Maximizing scientific output requires maximizing the
usability of the scientific code while minimizing the cost
of developing and supporting those code. This included
targeting different architectures for their software to be
deployed, as well as coordination between technically-
focused individuals and usage of a common scripting lan-
guage between projects. Instead of fragmenting the devel-
opment of simulation codes across institutions, the paper
suggests that a cohesive strategy reducing duplication and
increasing coordination will broadly increase the efficiency
across institutions. The approach proposed is of de-frag-
menting the existing ecosystem in a non-disruptive way.

Maheshwari et al. [66] focuses on “technology catalysts”
and their role in the modern scientific research process.
A technology catalyst is an individual with knowledge of
technological advancements, tasked with user engage-
ment to create scientific or engineering applications,
using suitable tools and techniques to take advantage
of current technological capabilities. One of the tasks of

technology catalysts is to seek community collaborations
for new applications and engage users, thus benefiting
both science, by effective running of scientific codes on
computational infrastructure, and technology, by conduct-
ing research and seeking findings for technology improve-
ment. The particular engagements described in the paper
came up from the lead author’s work as a postdoctoral
researcher at Cornell and Argonne, where interaction with
the scientific communities in both institutions resulted in
these collaborations.

At NESCent, a combination of in-house informatics indi-
viduals and domain scientists collaborate to develop soft-
ware to study evolutionary science. The report [33] stud-
ied the success of a “hackathon” model for development,
where short-form, hands-on events combining users,
researcher-developers and software engineers targeted
specific code improvements. From this experiment, the
authors identified several key outcomes as well as lessons-
learned: specifically, the co-localization of developers was
seen as having a strong impact, enabling casual conver-
sation that led to discrete outcomes. The formation of
the discussion mailing list, specifically in response to the
social capital built at the hackathon, was seen as spurring
on longer-term benefits to the community and fostering
sustainability.

Hart et al. [67] addresses the success of the rOpenSci
project in developing collaboration supporting tools for
Open Science. This software collective, organized around
the statistical programming environment R, develops
access mechanisms for data repositories and attempts
to reduce the barrier to entry for individuals wanting to
access data repositories and study the data contained
therein. The collective fosters direct collaboration between
individuals and data providers, designed to “train academ-
ics in reproducible science workflows focused around R.”
Two central challenges are engagement of existing users
within ecology and evolutionary biology (EEB), and how
the community can make inroads and traction in other
disciplines. Currently, the collective is exploring address-
ing these challenges through the use of social media,
holding workshops and hackathons. This helps to both
raise the profile of the collective within EEB and in other
domains. However, the overarching challenge identified
in the paper was that of incentivizing maintenance of soft-
ware, which is difficult in academia.

Christopherson et al. [32] outlines the degree to which
research relies on high quality software. There are often
barriers and a lack of suitable incentives for researchers
to embrace software engineering principles. The Water
Science Software Institute is working to lower some of
these barriers through an Open Community Engagement
Process. This is a four-step iterative development process
that incorporates Agile development principles.

Step 1: Design - thorough discussion of research questions
Step 2: Develop working code
Step 3: Refine based on new requirements
Step 4: Publish open source

Christopherson reports on the application of Steps 1–3
to a computational modeling framework developed in the

Katz et al: Summary of the First Workshop on Sustainable Software for Science Art. e6, page 11 of 21

1990s. Step 1 was a 2-day, in-person specifications meet-
ing and code walk-through. Step 2 was a 5-day hackathon
to develop working code, and Step 3 was a 3-day hack-
athon to refine the code based on new requirements. The
team worked on small, low-risk units of code. It was chal-
lenging, revealed unanticipated obstacles, programmers
had to work together, and experimentation was encour-
aged. The paper recommended: start small and gradually
building toward more complex objectives, consistent with
Agile development; develop consensus before coding, by
repeating step 1 before all hackathons; ensure newcomers
receive orientation prior to the hackathon, such as a code
walk-through or system documentation; and co-locate col-
laborators whenever feasible.

Pierce et al. [68] describes how science gateways can
provide a user-friendly entry to complex cyberinfrastruc-
ture. For example, more than 7,000 biologists have run
phylogenetic codes on supercomputers using the CIPRES
Science Gateway in 3½ years. Over 120 scientists from 50
institutions used the UltraScan Science Gateway in one
year, increasing the sophistication of analytical ultracen-
trifugation experiments worldwide. The new Neuroscience
Gateway (NSG) registered more than 100 users who used
250,000 CPU hours in only a few months.

Gateways, however, need to keep operational costs low
and can often make use of common components, such as
authentication, application installation and reliable exe-
cution and help desk support. Science Gateway Platform
as a Service (SciGaP) delivers middleware as a hosted, scal-
able third-party service while domain developers focus
on user interfaces and domain-specific data in the gate-
way. While SciGaP is based on the Apache Airavata pro-
ject and the CIPRES Workbench Framework, community
contributions are encouraged by its open source, open
governance and open operations policies. The goal is
robust, sustainable infrastructure with a cycle of develop-
ment that improves reliability and prioritizes stakeholder
requirements. The project is leveraging Internet2’s Net+
mechanisms for converting SciGaP and its gateways into
commodity services.

Zentner et al. [69] describes experiences and challenges
with the large nanoHUB.org community, where com-
munity is defined as a “body of persons of common and
especially professional interests scattered through a larger
society.” Support is challenging because of the diversity of
viewpoints and needs. The group constantly examines its
policies to determine whether they are indirectly alienat-
ing part of the community or encouraging particular types
of use. nanoHUB’s 10-year history with over 260,000 users
annually provides a lot of data to analyze: 4000 resources
contributed by 1000 authors. nanoHUB serves both the
research and education community and the contribution
model allows researchers to get their codes out into the
community and in use in education very rapidly. The pri-
mary software challenges are twofold — support for the
HUBzero framework and challenges related to the soft-
ware contributed by the community.

The group has learned that community contribu-
tions are maximized with a tolerant licensing approach.
HUBzero uses an LGPLv3 license so contributors can

create unique components and license as they choose.
If they make changes to source code, the original license
must be maintained for redistribution. As far as contrib-
uted resources, these must be open access, but not neces-
sarily open source. This allows contributors to meet the
requirements of their institutions and funding agencies.
Quality is maintained via user ratings. Documentation is
encouraged and nanoHUB supplies regression test capa-
bilities, but the user community provides ratings, poses
questions and contributes to wishlists and citation counts,
all of which incentivize code authors.

Terrel [34] describes support for the Python scientific
community through two major efforts: the SciPy confer-
ence and the NumFOCUS foundation. Since software
sustainability relies on contributions from all sectors of
the user community, these efforts support these sectors,
and help develop and mature Python. The reliance on
software in science has driven a huge demand for devel-
opment, but this development is typically done as a side
effort and often in a rush to publish without documenta-
tion and testing. While the software is often created by
academics, software support can fall to industrial insti-
tutions. SciPy brings together industry, government, and
academics to share their code and experience in an open
environment. NumFOCUS in a non-profit that promotes
open, usable scientific software while sustaining the
community through educational programs; collabora-
tive research tools and documentation; and promotion of
high-level languages, reproducible scientific research, and
open-code development. Governance is a loose grantor-
grantee relationship with projects, allowing funds to be
placed in the groups’ accounts. This has raised money to
hire developers for open code development, maintain
testing machines, organize the PyData conference series,
and sponsor community members to attend conferences.

Löffler et al. [70] describes the Cactus project, which
was started in 1996 by participants in the USA Binary
Black Hole Alliance Challenge. Cactus has a flesh (core)
and thorns (modules) model, a community-oriented
framework that allows researchers to easily work together
with reusable and extendable software elements. Modules
are compiled into an executable and can remain dormant,
becoming active only when parameters and simulation
data dictate. Users can use modules written by others
or can write their own modules without changing other
code. The community has grown and diversified beyond
the original science areas.

The paper points out four keys to sustaining the com-
munity: modular design, growing a collaborative com-
munity, career paths, and credit. In modular design, the
Cactus project went far beyond standard practices of APIs.
Domain specific languages (DSLs) allow decoupling of
components — for example I/O, mesh refinement, PAPI
counters, and boundary conditions abstracted from sci-
ence code. In academia, publications are the main cur-
rency of credit. Because the project connects code devel-
opments to science, the work is publishable and modules
are citable. Because of the open source, modular approach,
programmers can see the impact of their contributions
and often continue work after graduation. Career paths

http://nanoHUB.org

Katz et al: Summary of the First Workshop on Sustainable Software for ScienceArt. e6, page 12 of 21

remain a challenge, however. Tasks that are essential from
a software engineering perspective are often not rewarded
in academia. The best programmers in a science environ-
ment often have multidisciplinary expertise. This also is
not rewarded in academia.

Wilkins-Diehr et al. [71] describes an NSF software insti-
tute effort to build a community of those creating sci-
ence gateways for science. These gateways, as described
in some of the other papers in this section, can be quite
capable and can have strong scientific impact. Challenges
are similar to those highlighted by other papers in this
section: the conflict between funding for research vs infra-
structure and the challenges around getting academic
credit for infrastructure. The authors observe that devel-
opment is often done in an isolated hobbyist environ-
ment. Developers are unable to take advantage of similar
work done by others, finding themselves in isolation even
when their projects have common goals. But often pro-
jects struggle for sustainable funding because they pro-
vide infrastructure to conduct research and many times
only the research is funded. Gateways also may start as a
small group research project, taking off in popularity once
they go live, without any long term plans for sustainabil-
ity. Subsequent disruptions in service can limit effective-
ness and test the limits of the research community’s trust.

Recommendations from an early study of successful
gateways include: 1) Leadership and management teams
should design governance to represent multiple strengths
and perspectives, plan for change and turnover in the
future, recruit a development team that understands
both the technical and domain-related issues, consider
sustainability and measure success early and often. 2)
Projects should hire a team of professionals, demonstrate
credibility through stability and clarity of purpose, lever-
age the work of others, and plan for flexibility. 3) Projects
should identify one or more existing communities and
understand the communities’ needs before beginning,
then adapt as the communities’ needs evolve. 4) Funders
should consider the technology project lifecycle, and
design solicitations to reward effective planning, recog-
nize the benefits and limitations of both technology inno-
vation and reuse, expect adjustments during the produc-
tion process, copy effective models from other industries
and sectors, and encourage partnerships that support
gateway sustainability.

6.1.1 What are communities?
The workshop did not directly answer the question “What
are communities?” but instead a number of different
answers were indirectly presented, through the depiction
of individuals and stakeholders in different aspects of the
scientific software lifecycle. In broad strokes, however, sci-
entific software communities were generally accepted as
consisting of individuals, often but not always composed
of scientist practitioners, that were working with some
degree of coordination toward a common goal enabled
by software.

The discussion of development-focused communi-
ties centered around describing methods of interaction
between individuals and the scientific software. The first

type of interaction was the development of a specific piece
of software, the second was a particular domain or disci-
pline, and the final primary type of interaction was around
the development of applications built on a particular
piece of software that was perhaps developed by another
group. As an example, in [25], the community described is
comprised of both the for-profit company Kitware and the
users and contributors to their software packages such as
VTK. This structure, of the centralized development of core
infrastructure around which communities of individuals
applying that infrastructure and developing applications
utilizing it, was similarly reflected in [34], where the core
scientific python ecosystem is supported by a non-profit
entity that fosters community investment in that ecosys-
tem. In many ways, these two organizations (Kitware and
NumFOCUS) attempt to cross domain boundaries and
provide support for both the infrastructure and applica-
tion sides of community building.

6.1.2 Measuring community
How might a project know when it has built a sustainable
community? How might an outsider be able to assess the
activity and sustainability of that community? These ques-
tions have been partially addressed in the literature. For
example, a key metric in online communities in general
is the cross-over point where there are more external con-
tributors than internal ones. Richard Millington’s book
“Buzzing Communities” does an excellent job of outlining
these measures, drawing on communities research in an
accessible manner [72]. Some participants in the work-
shop have since prepared materials outlining current and
future practices in measurement of scientific software and
its ecosystem [73].

6.1.3 Additional Resources for learning about software
communities
Scientific software communities were viewed as a subset
of software communities as whole. As such, resources
applicable to generic software communities – such as
open source and proprietary technology companies – can
be used as input and as guiding understanding of how
to steward and develop scientific software communities.
Because incentive structures are different in industry and
volunteer-based open source communities, these can pro-
vide rough guidelines but not necessarily identically appli-
cable. The analogy between corporations and scientific
investigators (particularly in terms of competition, coop-
eration and competitive advantage) has been explored in
the literature below, but because of the different incentive
structure the analogy is not universally true.

The literature below, suggested by attendees, addresses
both non-scientific software projects, as well as scientific
projects. The selections address both descriptive and pre-
scriptive approaches to communities.

Both [53] and [52] study how scientific software collec-
tives self-organize and address issues of incentive, long-
term support, and development of infrastructure as well
as new features. As noted elsewhere in this summary, [36]
shared prescriptions from two software communities in
astrophysics.

Katz et al: Summary of the First Workshop on Sustainable Software for Science Art. e6, page 13 of 21

From the perspective of developing prescriptions for
successful scientific software development, both [74] and
[75] share experiences and suggestions for developing
sustainable practices. [74] proposes “ten simple rules” for
developing open source scientific software, focusing on
both the choices made during development and the sus-
tainability of practices in the long term. [75] describes the
development and long-term growth of the deal.II library,
and how its place in its ecosystem of libraries, applications
and domains has shaped its development and community
trajectory.

From more traditional open source development,
resources were shared that developed communities explic-
itly, such as [76] and [77], focusing on large-scale projects
such as the Ubuntu Linux distribution and smaller-scale
volunteer-developed projects like such as ThinkUp, respec-
tively. The process of open source development, while less
explicitly focused on community building, sketched in
[78] was seen as a valuable resource, particularly when
combined with the management and personal interaction
techniques outlined in [35]. Growing diversity in commu-
nities was directly addressed in [79], where experiences
growing the diversity of technical conferences in open
source were described.

6.2 Industry & Economic Models
Several papers presented discussed the connection
between industry and scientific software, from the per-
spective of both integrating efforts between the two and
sustaining long-term development.

Hanwell et al. [25] reflect on the 15-year history of open
source software development at Kitware. In particular,
they focus on their success at growing their community
of users through enabling multiple channels of communi-
cation, directly reaching out to individuals, and lowering
the barrier to entry for contributions. This involves provid-
ing clear, test-oriented and review-based mechanisms for
evaluating contributions, permissive licenses, and a ser-
vice-based model for sustaining development. This model
enables Kitware to receive both public funding, as well as
private funding to support improvements and targeted
developments of the software.

Foster et al. [80] discussed the approach of develop-
ing sustainability models around Software-as-a-Service
(SaaS) platforms, with the target example being that of
GlobusOnline. The authors build a case that both grant-
based and volunteer-based development fall short in
sustaining software, resulting in software that is dispro-
portionately difficult to use compared to its functionality,
which they note directly impacts the overall scientific pro-
ductivity of its users. In contrast, by charging a subscrip-
tion fee for hosted, centrally-managed software (similar to
offerings by Dropbox, EverNote, GMail), the authors pro-
pose to manage the funding cycle and enable a greater
focus on the aspects of software that directly impact
individuals, rather than funders. Globus has deployed
such a service, for which they have attempted to develop
a sustainable economic model that reduces institutional
obstacles to funding and subscription. However, they do
identify that cultural obstacles do still remain, and they

note a particular difference in culture between NSF- and
NIH-funded researchers.

6.3 Education & Training
The papers describing education and training were focused
primarily on how these aspects of community develop-
ment impact on the long-term sustainability of software
projects. [40] described the impact of the mandate within
the International Centre for Theoretical Physics (ICTP)
to foster resources and competences in software devel-
opment and HPC, resulting in the development of edu-
cational curricula directed in this area. The paper itself
described the changes made in these curricula as a result
of the current changes in the HPC and scientific software
landscape due to the advent of scripting languages, new
programming paradigms and new types of hardware such
as accelerator technologies. The development of a work-
shop, with carefully selected participants and an immer-
sive approach to learning, was identified as a major suc-
cess for educating and developing new scientific software
developers from targeted domains.

Elster [81] also points out how the prevalence and rapid
growth of multi and many-core systems forces awareness
of data locality and synchronization issues if one want to
teach people how to develop high-performing scientific
codes.

[37] addressed education and training within com-
putational chemistry frameworks, particularly as these
frameworks attempt to address next-generation com-
puter hardware and software and as chemistry courses
emphasize lab work over computational education. The
authors identify this lack of computational awareness
and training as the primary challenge to future advances
in computational chemistry. The authors propose a new
institute for computational chemistry, emphasizing col-
laboration (and a licensing structure, such as LGPL or
more permissive) and education of future generations of
chemistry researchers.

7 Cross-cutting Issues
Three issues, how to define software sustainability, how
career paths (or their lack) interact with achieving it, and
the impact of software licenses, were raised across the
workshop’s panels. This section aims to synthesize these
discussions from different perspectives.

7.1 Defining Sustainability
What is, or should be meant by “sustainability” in the
context of software came up in many different parts of
the workshop, specifically in the first keynote (§3.1), the
Developing and Maintaining Software panel (§4), and the
Policy panel (§5). It quickly became clear that at present
there is no consensus among the community, whether
within or across disciplines, on what this definition should
be, and that a variety of different definitions were being
assumed, used, or sometime expressly articulated by con-
tributors and attendees. However, some concepts, par-
ticularly relating sustainability to change over time, were
also evidently held in common. This common notion is,
for example, captured in the definition used by the UK’s

Katz et al: Summary of the First Workshop on Sustainable Software for ScienceArt. e6, page 14 of 21

Scientific Software Sustainability Institute, quoted in [44]:
“software you use today will be available—and continue
to be improved and supported—in the future”. Pierce et al
[45] express this idea as software that continues to serve
its users.

Philip Bourne, too, used the relation to change over
time when he suggested in his opening keynote that sus-
tainability can perhaps be defined as the effort needed to
make the essential things continue. This leads to having
to decide what it is that we want to sustain, whether what
we want to sustain is valuable, and finally, who would care
and how much if it went away. As was pointed out dur-
ing a discussion session, OSS Watch, an advisory service
for issues relating to free and open source software in the
UK, proposes a Software Sustainability Maturity Model to
address the issue of what level of sustainability a particu-
lar element of software needs to have, and where this is
important. It, too, expresses sustainability in relation to
change over time:

“When choosing software for procurement or devel-
opment reuse — regardless of the license and devel-
opment model you will use — you need to consider
the future. While a software product may satisfy
today’s needs, will it satisfy tomorrow’s needs? Will
the supplier still be around in five years’ time? Will
the supplier still care for all its customers in five
years’ time? Will the supplier be responsive to bug
reports and feature requests? In other words, is the
software sustainable?” [82]

Attendees suggested that having a definition of sustain-
ability on which the community can agree is key. A related
question that was raised is what the goal of sustainability
should be, with a wide range of possible answers, includ-
ing more reproducible science, software persistence, and
quality. And given a goal of sustainability, how would
success in achieving it be measured? How would one
know that a piece of software has reached sustainability?
Participants pointed out that for truly sustainable soft-
ware there should be no endpoint at which sustainabil-
ity can be claimed, because the software products would
continue to be used and useful beyond the single institu-
tion, grant, and developer or development team that cre-
ated them. This may mean that sustainability needs to be
addressed throughout the full software life cycle. It was
also pointed out that software sustainability is not iso-
lated from other attributes of scientific software and its
use, such as usability, and provenance. Similarly, the ques-
tion was considered, albeit only briefly, whether propri-
etary versus open-source license plays a role in the context
of software sustainability. For example, should a project
ensure that it uses an OSI-approved license so that soft-
ware products can outlive any single entity if they remain
important.

Because part of the Policy panel (§5) was about mod-
eling sustainability, and modeling requires defining what
will be modeled, this panel saw particular attention to the
questions surrounding the definition of sustainability.

Two papers, Venters et al. [44] and Katz and Proctor [46],
specifically discuss the issue.

According to Venters et al. [44], sustainability is a rather
ambiguous concept, and the lack of an accepted defini-
tion hampers integrating the concept into software engi-
neering. They suggest that sustainability falls under the
category of non-functional requirements, and that a soft-
ware’s sustainability is a consequence of a set of central
software architecture quality attributes, including exten-
sibility, interoperability, maintainability, portability, reus-
ability, and scalability. They also propose an evaluation
framework with which quality and sustainability could be
measured at the architectural level.

Katz and Proctor [46] propose a set of questions that
could be used to measure software sustainability:

•	 Will the software continue to provide the same func-
tionality in the future, even if the environment (other
parts of the infrastructure) changes?

•	 Is the functionality and usability clearly explained to
new users?

•	 Do users have a mechanism to ask questions and to
learn about the software?

•	 Will the functionality be correct in the future, even if
the environment changes?

•	 Does it provide the functionality that existing and
future users want?

•	 Will it incorporate new science, theory, or tools as
they develop?

Despite their phrasing, these questions are not intended
to be given simplistic yes or no answers, and it is the com-
plete set rather than any individual one that would deter-
mine where in the range of sustainability a software falls.

7.2 Career Paths for Scientific Software Developers
Career path issues also came up repeatedly, starting in the
first keynote (§3.1), where Phil Bourne used the term “the
Google Bus” to describe the issue of well-trained software
development staff in academic labs choosing to leave sci-
ence and to work instead for technology firms, especially
Google, which happens in large enough numbers that
Google operates a bus every day to its nearest offices (and
hence staff who leaves academia in this way do not even
have to physically move).

The career path issue emerged repeatedly across panels
because for scientific software to be(come) sustainable, pro-
jects trying to create sustainable software need to be able
to recruit and retain software developers trained in the vari-
ous requisite software engineering facets. However, a career
path in research means faculty at most universities, and as
was noted repeatedly in discussions, faculty are hired based
on their scientific qualifications, not on their software
development skills or track record. Consequently, develop-
ing special software development skills is unlikely to fur-
ther a career in science at a university, although national
laboratories were acknowledged as a different case. Loffler
et al. [70], one of the papers in the Communities panel (§6),
brought the problem to the point:

Katz et al: Summary of the First Workshop on Sustainable Software for Science Art. e6, page 15 of 21

“The most severe problem for developers in most
computational sciences currently is that while most
of the work is done creating hopefully well-written,
sustainable software, the academic success is often
exclusively tied to the solution of the scientific prob-
lem the software was designed for. Tasks that from a
software engineering standpoint are essential, e.g.,
high usability, well-written and updated documen-
tation, or porting infrastructure to new platforms,
are not rewarded within this system.” [70]

Clearly, improving the recognition of software engineering
work is connected to addressing the career path problem.
As was noted in the Developing and Supporting Software
(§4) and the Policy (§5) panel discussions, there are
encouraging signs of improvement, including some alt-
metric services (such as Impactstory, http://impactstory.
org) collecting metrics for software source code, and the
fact that NSF now asks to list “products” rather than their
“publications” in an investigator’s biosketch or results
from prior NSF support. However, how software, let alone
parts of software are reused by others can be very diffi-
cult to measure, and better recognizing software products
for principle investigators by itself does not create career
paths for specialist software developers working as part of
a university research group. Huang and Lapp [59], a con-
tribution to the Policy panel, offer one possible solution in
which a software engineering center of excellence offers a
career path for a correspondingly trained workforce, and
increased recognition of the resulting more sustainable
software would in a virtuous cycle heighten the value of
the center’s services.

7.3 Licensing and Software Patents
Issues related to licensing and patents primarily was
discussed in the Communities session, but licensing
was also a concern of many of the other contributors in
other sessions. Software is no longer just open or closed
(only binaries available), but also licensed and patented,
which clearly also impacts software sustainability. While
many papers briefly discussed licensing issues, Elster
[81] directly discussed the impact of software licenses on
obtaining industrial funding for scientific software pro-
jects. In particular, she described her experiences with
researchers unwilling to utilize GPL (copyleft) code, as it
adds restrictions to reuse that they themselves as well as
some industries find unacceptable for future commercial-
ization. (This was discussed by Hanwell et al. [25] as well.)

US information technology companies funding academ-
ics will thus often insist on BSD licensing on software since
they then can legally include the code into their commer-
cial codes. On the other hand, there are companies that
fund larger GPL-licensed software projects [30] and insist
that the university projects they fund also produce code
with GPL licensing. They do not accept BSD-like licenses
since they argue that other companies then may choose
to build closed commercial codes on they software they
funded, rather than encouraging the community to con-
tribute freely and thus ensuring software sustainability for

the community. In either case, the university researchers
are not given much choice if they want these much sought
after funds in a increasingly competitive grant world.

Another obstacle to sustainability identified by Elster
include patenting of software. Most countries place some
limits on software patents. The European Union outright
forbids them, while US patent law excludes “abstract
ideas”, which has been used to refuse some software pat-
ents. Further obstacles to sustainability include a lack of
open access, and even more broadly, a lack of open source
codes even in open access journals. Finally, a lack of aware-
ness on the part of scientific software developers of com-
modity libraries for common tasks reduces their ability to
reuse code.

8 Case Studies
In this section, we discuss some of the software projects
as case studies to better understand the points discussed
during the workshop and described in the previous sec-
tions, and to find how they are affected by sustainability
issues in practice. Most of the software projects discussed
here were publicly launched 10 or more years ago. We
generally note the original release (o.r.) year of each pro-
ject in parenthesis in its first mention.

We classify the software projects discussed in the work-
shop in two broad categories. First, the utility software,
comprising of general purpose software. Utility software
is often used as enabler or facilitator for the development
of other tools and techniques to carry out scientific work.
This includes the software developed to efficiently utilize
new research infrastructures. Second, the scientific soft-
ware, comprising the software that was originally devel-
oped with an aim to solve a specific scientific problem.
This classification is motivated by our argument that the
two kinds of software projects wildly vary in factors such as
scope, purpose and usage. The development and manage-
ment of each kind is significantly different. Consequently,
the sustainability challenges faced by them differ and
must be treated separately. For instance, the challenges
faced by a gateway software development project such as
CIPRES (o.r. 2007) or visualization software products such
as VisIT (o.r. 2001) or ParaView (o.r. 2002) are distinct to a
niche software for ab initio modeling and simulation such
as VASP (o.r. 1992) or Quantum Espresso (o.r. 2001).

8.1 Utility Software
Software developed with a potentially wider audience and
general purpose usage in mind is utility software. Utility
software typically does not address fundamental research
problems for a given scientific domain. Examples are col-
laborative development frameworks such as GitHub (o.r.
2008) and Bitbucket (o.r. 2008), distributed workflow and
generic computing frameworks such as Galaxy (o.r. 2006),
HUBzero (o.r. 2010), SimGrid (o.r. 2001), Swift (o.r. 2007),
Globus (o.r. 2000) and VisTrails (o.r. 2007), and visualiza-
tion frameworks such as VTK, VisIT, and ParaView.

Development is often a high risk/reward undertaking
exploring uncharted territories and is largely influenced
by (re)usability factors. Owing to a relatively large number

http://impactstory.org
http://impactstory.org

Katz et al: Summary of the First Workshop on Sustainable Software for ScienceArt. e6, page 16 of 21

of features, the development and prototype process is also
lengthy which poses a significant survival risk. Challenges
on a class of utility software for new architectures is well
discussed in [83].

On the other hand, utility software presents oppor-
tunities to be usable by a larger community making its
undertaking and development an attractive pursuit. It is
generally more visible in community which in turn leads
to a broader and deeper participation. For instance, it
helps promoting collaborations across the breadth
(e.g., different departments) and depth (e.g., stakehold-
ers within a department) of community, one of the key
ingredients of a sustainable process. Successful util-
ity projects reap high rewards and have a longer usage
span. Development process becomes user-driven and
self-sustaining.

One such example is the Galaxy project [61]. It follows
agile software development practices and implements
standards such as test-driven development and socialized
bug managing practices via trello. Galaxy histories and
toolshed offer easy community sharing of data and tools
further promoting a collaborative environment. The pro-
ject closely follows the guidelines described in Carver and
Thiruvathukal [84] and many from Prlić and Procter [41].
Many utility software projects are often developed aim-
ing better utilizing a particular, new infrastructure and
architecture, e.g., MVAPICH (o.r. 2002), VisIT, ParaView.
Similarly, to leverage the power of emerging architec-
tures such as accelerators, new code and libraries are
required. The experience of one such effort as described
in Ferenbaugh [83] which met with a limited success but
nonetheless with many invaluable lessons were learned
about influential cultural and technical aspects in sustain-
able software development practices.

A relatively new paradigm in utility software is the
software delivered as service over the web. With increas-
ing popularity of cloud-based storage and computational
environments, many users are leaning towards tools used
as services. GitHub and Bitbucket can be argued to be
such tools, catering to collaborative development. For sci-
entific users Globus-based tools are a case of service-based
utility software discussed during the workshop. The data
movement and sharing services offered by Globus can be
easily used over the web by collaborating researchers.

8.2 Scientific software
Scientific software consists primarily of special-purpose
software that was purpose-built for a target use-case sce-
nario, fixed requirements in mind, or solving a specific
problem. Software projects pertaining to specific scien-
tific domain tend to be in a niche and the user community
tends to be small to medium. They are mostly driven by
the science and specific needs of a research group. Specific
needs such as numerical accuracy and algorithmic optimi-
zation are some of the paramount requirements of most
scientific software.

Long-term sustainability of scientific software is often
a significant challenge and face radically different issues
compared to utility software. Many submissions reported

that software is practically considered a “byproduct” of
the actual research. Others contended that the software
was not the main funded part of their research. A smaller
codebase and fixed requirements result in stability, ease
of installation, and configuration. Many such projects
mature and are treated as libraries to be integrated into
larger systems such as some of the utility software dis-
cussed in the previous section. While the software can
stay stable and require relatively low maintenance, the
responsibility is often on the shoulders of a few develop-
ers who are often not specialists in software development.
Development tends to be linear and simplistic with a lim-
ited scope to follow software best practices.

Some examples of such software discussed as part of the
workshop are DUNE (o.r. 2008), R/qtl (o.r. 2002), Kitware
(o.r. 1998), PETSc (o.r. 1995), and MINRES-QLP (o.r. 2007),
most of which are focused on one scientific or applied
mathematics domain. However, sometimes such projects
grow beyond the initial vision of developers. One such
example is Kitware, which while being a software prod-
uct specializing in the scientific process, has a core focus
of developing communities around software processes.
Another instance of this process is the development of the
CMake build utility, which started out as a building tool
for ITK but grew to become a generic build utility for C++
projects. Similarly, PETSc is growing towards becoming a
general purpose utility system usable for solving a variety
of scientific problems.

8.3 Distinctions
In conclusion, we find that there are distinctions in the
characteristics and challenges faced between utility and
scientific software projects. We find that the utility soft-
ware packages are more likely to use the best practices
discussed during the workshop. Often, sustainability of
scientific software projects is achieved by the fact that
the core developer or team heavily utilizes the software
for their own science, e.g., R/qtl, PETSc. Furthermore, the
development of scientific software requires more scien-
tific background compared with utility software, thus in
many cases, the bulk of development is carried out by a
domain scientist. For these reasons, we believe that sep-
arate guidelines and sustainability principles could be
defined for these two software categories.

9 Conclusions
To conclude, we highlight what we have learned from the
workshop, and what we plan to do going forward.

9.1 Issues and lessons
Three major issues came up repeatedly in different parts
of the workshop:

(1) The need for a definition of sustainability such
that the community can get behind it. Although
some had hoped that at least an initial consensus
could be reached in the course of the workshop,
this proved elusive. However, in the absence of
such a definition it will remain difficult to define

Katz et al: Summary of the First Workshop on Sustainable Software for Science Art. e6, page 17 of 21

exactly what the goals should be towards achiev-
ing, or even only improving software sustainability,
and hence what practices should be followed and
implemented when. As described in the next sub-
section (§9.2), the workshop organizers have begun
an effort to address this.

(2) The need for academic career paths for scientific
software developers. Unfortunately, it is not clear
how to ensure that these career paths become avail-
able, other than repeatedly talking about this issue.
The recent Moore and Sloan initiative in data sci-
ence [85] are trying to address this, to some extent,
by providing funds and incentives to universities in
the US that work towards this goal.

(3) The need for recognition of scholarship in scien-
tific software over research articles. This need prob-
ably is the most addressed of the three, today, with
efforts underway such as the Mozilla Science Lab,
GitHub, and figshare “Code as a research object”
project [86] among others.

In addition, licensing and patents, and how they impact
research funding for software development, were also
discussed.

Discussion sessions
Two strong lessons came out of the three discussion
sessions:

(1) Use of shared repositories in the development of
collaborative projects facilitates collaboration,
reproducibility, and sustainability in computational
science. However, it represents a barrier in some
scientific fields and has yet to be more widely
adopted.

(2) A sustainability model for scientific software is to
build a pipeline from construction to consumption,
as found in the most efficient information
technology enterprises.

Use cases
Two distinct class of scientific software projects and
products were discussed in the workshop: 1) generic,
large-scale utility software and 2) niche, medium- and
small-scale scientific software. Each class faces different
and significant challenges. New undertakings should rec-
ognize the differences in advance and identify such chal-
lenges within the development and sustaining efforts.
In particular, the dynamics associated with developers,
scope, life cycle, users-community, (re)usability, funding
support, and career paths vary widely among the two
classes of software.

Workshop process
The WSSSPE workshop can be viewed as an experiment in
how we can collaboratively and inclusively build a work-
shop agenda, without asking a large number of people to
submit papers that will be rejected so that the workshop
can have a low acceptance rate.

Contributors also want to get credit for their participa-
tion in the process. And the workshop organizers want to
make sure that the workshop content and their efforts are
recorded. The methods used in the WSSSPE1 workshop
were successful: we had good participation; contributors
have a report they can cite; the record of the workshop
is open and available through the self-published reports,
the workshop website and notes site, and this paper. In
addition, many additional papers are being created that
will include the discussions at the workshop, including
extended versions of many of the self-published reports
such as those that are in this special issue.

Ideally, there would be a service that would be able
to index the contributions to the workshop, serving the
authors, the organizers, and the larger community.

9.2 Future activities
The organizers of the workshop have begun a survey to
understand how the community define software sustain-
ability. It is expected that this survey will gather one or
more consensus definitions, and lead to a short paper dis-
cussing them, as well as the level of consensus.

Additional activities that are being planned include two
additional WSSSPE workshops at the 2014 SciPy and SC14
conferences. The SciPy workshop (WSSSPE1.1) will focus
on how some software projects from the SciPy commu-
nity have dealt with software sustainability issues, both
successfully and unsuccessfully, while the SC14 workshop
(WSSSPE2) will be more general, and will likely focus on
determining and publicizing specific activities that the
overall scientific software community can take to move
forward. In addition, there will be a two-session minisym-
posium on “Reliable Computational Science” at the 2014
Society for Industrial and Applied Mathematics Annual
Meeting (SIAM AN14, http://meetings.siam.org) to fur-
ther explore some of the key issues raised here.

Acknowledgments
Some of the work by Katz was supported by the National
Science Foundation while working at the Foundation; any
opinion, finding, and conclusions or recommendations
expressed in this material are those of the author and do
not necessarily reflect the views of the National Science
Foundation.

Choi thanks Ian Foster, Director of the Computation
Institute, University of Chicago, for encouraging her
work in reliable reproducible research and supporting
her trip to participate in the WSSSPE1 conference as a
contributor.

Lapp was supported by the National Evolutionary
Synthesis Center (NESCent), NSF EF-0905606.

Hetherington was supported by the UK Engineering
and Physical Sciences Research Council (EPSRC) Grant EP/
H043160/1 for the UK Software Sustainability Institute.

Howison was supported by NSF SBE-1064209 and NSF
ACI-0943168.

Wilkins-Diehr was supported by the Extreme Science
and Engineering Discovery Environment (XSEDE), NSF
ACI-1053575.

http://meetings.siam.org

Katz et al: Summary of the First Workshop on Sustainable Software for ScienceArt. e6, page 18 of 21

Elster would like to thank Statoil ASA for supporting her
travel and her research group through a grant related to
the OPM/DUNE open source projects.

Supporting Information
Appendix A: Call for Papers (PDF)
Appendix B: Papers Accepted and Discussed at WSSSPE1
(PDF)
Appendix C: Attendees (PDF)

References
1. WSSSPE1 attendees WSSSPE1 Collaborative Notes.

Available at: https://docs.google.com/document/
d/1eVfioGNlihXG_1Y8BgdCI6tXZKrybZgz5XuQHjT1
oKU/ [Last accessed 03 February 2014].

2. National Science Foundation 2012 A Vision and
Strategy for Software for Science, Engineering, and
Education: Cyberinfrastructure Framework for the
21st Century. Available at: http://www.nsf.gov/pub-
lications/pub_summ.jsp?ods_key=nsf12113 [Last
accessed 03 April 2014].

3. arXiv.org e-Print archive [Cited 03 February 2014].
Available at: http://arxiv.org.

4. figshare [Cited 03 February 2014]. Available at:
http://figshare.com

5. Katz, D S, Allen, G, Hong, N C, Parashar, M, and
Proctor, D 2013 First Workshop on Sustainable Soft-
ware for Science: Practice and Experiences (WSSSPE):
Submission and Peer-Review Process, and Results.
arXiv, 1311.3523. Available at: http://arxiv.org/abs/
1311.3523

6. Bourne, P E 2013 A Recipe for Sustainable Software.
In: The First Workshop on Sustainable Software for
Science: Practice and Experiences (WSSSPE1), Den-
ver, Colorado, USA on 17 November 2013. Abstract
available online: http://wssspe.researchcomputing.
org.uk/wssspe1/keynotes/#bourne. Slides available
online: www.slideshare.net/pebourne/a-recipe-for-
sustainable-software

7. Public Library of Science [Cited 11 February 2014].
Available at: http://www.plos.org/

8. Protein Data Bank [Cited 05 February 2014]. Avail-
able at: http://www.rcsb.org/pdb/

9. GitHub [Cited 11 February 2014]. Available at:
https://github.com/

10. The BioJava Project [Cited 07 February 2014]. Avail-
able at: http://biojava.org

11. Open Science Data Cloud [Cited 07 February 2014].
Available at: https://www.opensciencedatacloud.
org/

12. Veretnik, S, Fink, J L and Bourne, P E 2008 Computa-
tional Biology Resources Lack Persistence and Usabil-
ity. PLoS Computational Biology, 4(7): e1000136. DOI:
http://dx.doi.org/10.1371/journal.pcbi.1000136

13. National Science Foundation Small Business Inno-
vation Research [Cited 07 February 2014]. Available
at: http://www.nsf.gov/eng/iip/sbir/

14. National Science Foundation Facilitation Awards
for Scientists and Engineers with Disabilities [Cited
07 February 2014]. Available at: http://www.nsf.

gov/pubs/policydocs/pappguide/nsf09_1/gpg_2.
jsp#IID2

15. Dickin, R 2014 What does peer review mean when
applied to computer code? [Cited 07 February
2014]. Available at: http://blogs.plos.org/biologue/
2013/08/08/what-does-peer-review-mean-when-
applied-to-computer-code/

16. Bourne, P E 2011 Ten Simple Rules for Getting Ahead
as a Computational Biologist in Academia. PLoS
Computational Biology, 7(1): e1002001. DOI: http://
dx.doi.org/10.1371/journal.pcbi.1002001

17. Smith, A 2013 Scientific Software and the Open
Collaborative Web. In: The First Workshop on Sus-
tainable Software for Science: Practice and Expe-
riences (WSSSPE1), Denver, Colorado, USA on 17
November 2013. Abstract available online: http://
wssspe.researchcomputing.org.uk/wssspe1/
keynotes/#smith. Slides available online: http://
is.gd/wssspe

18. Stodden, V 2013 Why Science is an Open Endeavor.
In: The Open Knowledge Conference, Geneva, Swit-
zerland on 16–18 September 2013. Slides avail-
able online: http://www.stanford.edu/~vcs/talks/
OKcon2013-Sept172013-STODDEN.pdf

19. Brown, C T Laboratory of Genomics, Evolution and
Development [Cited 07 February 2014]. Available at:
http://ged.msu.edu

20. RubyGems.org [Cited 07 February 2014]. Available
at: http://rubygems.org/

21. PyPI – The Python Package Index [Cited 07 Febru-
ary 2014]. Available at: https://pypi.python.org/pypi

22. The Comprehensive Perl Archive Network (CPAN)
[Cited 07 February 2014]. Available at: http://www.
cpan.org/

23. Foreman-Mackey, D and contributors The Python
ensemble sampling toolkit for affine-invariant MCMC
[Cited 07 February 2014]. Available at: https://github.
com/dfm/emcee

24. Perez, F 2013 An ambitious experiment in Data Sci-
ence takes off: a biased, Open Source view from Berke-
ley [Cited 07 February 2014]. Available at: http://
blog.fperez.org/2013/11/an-ambitious-experiment-
in-data-science.html

25. Hanwell, M, Perera, A, Turner, W, O’Leary, P,
Osterdahl, K, Hoffman, B, et al 2013 Sustainable
Software Ecosystems for Open Science. figshare,
790756. Available at: http://dx.doi.org/10.6084/
m9.figshare.790756

26. Ahern, S, Brugger, E, Whitlock, B, Meredith, J S,
Biagas, K Miller, M C, et al 2013 VisIt: Experiences
with Sustainable Software. arXiv, 1309.1796. Avail-
able at: http://arxiv.org/abs/1309.1796

27. Koop, D, Freire, J and Silva, C T 2013 Enabling
Reproducible Science with VisTrails. arXiv: 1309.1784.
Available at: http://arxiv.org/abs/1309.1784

28. Panda, D K, Tomko, K, Schulz, K and Majumdar,
A 2013 The MVAPICH Project: Evolution and Sus-
tainability of an Open Source Production Quality
MPI Library for HPC. figshare, 791563. Available at:
http://dx.doi.org/10.6084/m9.figshare.791563

http://openresearchsoftware.metajnl.com/downloads/supporting-info/jors-an-a.pdf
http://openresearchsoftware.metajnl.com/downloads/supporting-info/jors-an-b.pdf
http://openresearchsoftware.metajnl.com/downloads/supporting-info/jors-an-b.pdf
http://openresearchsoftware.metajnl.com/downloads/supporting-info/jors-an-c.pdf
https://docs.google.com/document/d/1eVfioGNlihXG_1Y8BgdCI6tXZKrybZgz5XuQHjT1oKU/
https://docs.google.com/document/d/1eVfioGNlihXG_1Y8BgdCI6tXZKrybZgz5XuQHjT1oKU/
https://docs.google.com/document/d/1eVfioGNlihXG_1Y8BgdCI6tXZKrybZgz5XuQHjT1oKU/
http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf12113
http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf12113
http://arXiv.org
http://arxiv.org
http://figshare.com
http://arxiv.org/abs/1311.3523
http://arxiv.org/abs/1311.3523
http://wssspe.researchcomputing.org.uk/wssspe1/keynotes/#bourne
http://wssspe.researchcomputing.org.uk/wssspe1/keynotes/#bourne
www.slideshare.net/pebourne/a-recipe-for-sustainable-software
www.slideshare.net/pebourne/a-recipe-for-sustainable-software
http://www.plos.org/
http://www.rcsb.org/pdb/
https://github.com/
http://biojava.org
https://www.opensciencedatacloud.org/
https://www.opensciencedatacloud.org/
http://dx.doi.org/10.1371/journal.pcbi.1000136
http://www.nsf.gov/eng/iip/sbir/
http://www.nsf.gov/pubs/policydocs/pappguide/nsf09_1/gpg_2.jsp#IID2
http://www.nsf.gov/pubs/policydocs/pappguide/nsf09_1/gpg_2.jsp#IID2
http://www.nsf.gov/pubs/policydocs/pappguide/nsf09_1/gpg_2.jsp#IID2
http://blogs.plos.org/biologue/2013/08/08/what-does-peer-review-mean-when-applied-to-computer-code/
http://blogs.plos.org/biologue/2013/08/08/what-does-peer-review-mean-when-applied-to-computer-code/
http://blogs.plos.org/biologue/2013/08/08/what-does-peer-review-mean-when-applied-to-computer-code/
http://dx.doi.org/10.1371/journal.pcbi.1002001
http://dx.doi.org/10.1371/journal.pcbi.1002001
http://wssspe.researchcomputing.org.uk/wssspe1/keynotes/#smith
http://wssspe.researchcomputing.org.uk/wssspe1/keynotes/#smith
http://wssspe.researchcomputing.org.uk/wssspe1/keynotes/#smith
http://is.gd/wssspe
http://is.gd/wssspe
http://www.stanford.edu/~vcs/talks/OKcon2013-Sept172013-STODDEN.pdf
http://www.stanford.edu/~vcs/talks/OKcon2013-Sept172013-STODDEN.pdf
http://ged.msu.edu
http://RubyGems.org
http://rubygems.org/
https://pypi.python.org/pypi
http://www.cpan.org/
http://www.cpan.org/
https://github.com/dfm/emcee
https://github.com/dfm/emcee
http://blog.fperez.org/2013/11/an-ambitious-experiment-in-data-science.html
http://blog.fperez.org/2013/11/an-ambitious-experiment-in-data-science.html
http://blog.fperez.org/2013/11/an-ambitious-experiment-in-data-science.html
http://dx.doi.org/10.6084/m9.figshare.790756
http://dx.doi.org/10.6084/m9.figshare.790756
http://arxiv.org/abs/1309.1796
http://arxiv.org/abs/1309.1784
http://dx.doi.org/10.6084/m9.figshare.791563

Katz et al: Summary of the First Workshop on Sustainable Software for Science Art. e6, page 19 of 21

29. Broman, K W 2014 Fourteen years of R/qtl: Just
Barely Sustainable. Journal of Open Research Software,
2(1): e11. DOI: http://dx.doi.org/10.5334/jors.at

30. Blatt, M 2013 DUNE as an Example of Sustain-
able Open Source Scientific Software Development.
arXiv, 1309.1783. Available at: http://arxiv.org/
abs/1309.1783

31. Crusoe, M and Brown, C T 2013 Walking the talk:
adopting and adapting sustainable scientific soft-
ware development processes in a small biology lab.
figshare, 791567. DOI: http://dx.doi.org/10.6084/
m9.figshare.791567

32. Christopherson, L, Idaszak, R and Ahalt, S 2013
Developing Scientific Software through the Open
Community Engagement Process. figshare, 790723.
DOI: http://dx.doi.org/10.6084/m9.figshare.790723

33. Cranston, K, Vision, T, O’Meara, B and Lapp, H
2013 A grassroots approach to software sustainability.
figshare, 790739. DOI: http://dx.doi.org/10.6084/
m9.figshare.790739

34. Terrel, A 2013 Sustaining the Python Scientific Soft-
ware Community. figshare, 791565. DOI: http://
dx.doi.org/10.6084/m9.figshare.791565

35. Fitzpatrick, B W and Collins-Sussman, B 2012
Team geek: a software developer’s guide to working
well with others. Sebastopol, CA: O’Reilly. Available at:
http://opac.inria.fr/record=b1134063

36. Turk, M J 2013 Scaling a Code in the Human Dimen-
sion. In: Proceedings of the Conference on Extreme
Science and Engineering Discovery Environment:
Gateway to Discovery. XSEDE ’13. New York, NY, USA:
ACM. pp. 69:1–69:7. Available at: http://doi.acm.
org/10.1145/2484762.2484782

37. Crawford, T D 2013 On the Development of Sus-
tainable Software for Computational Chemistry.
figshare, 790757. DOI: http://dx.doi.org/10.6084/
m9.figshare.790757

38. Trainer, E H, Chaihirunkarn, C and Herbsleb, J D
2014 The Big Effects of Short-term Efforts: Mentor-
ship and Code Integration in Open Source Scientific
Software. Journal of Open Research Software, 2(1): e18.
DOI: http://dx.doi.org/10.5334/jors.bc

39. Dubey, A and Van Straalen, B 2014 Experiences
from Software Engineering of Large Scale AMR Mul-
tiphysics Code Frameworks. Journal of Open Research
Software, 2(1): e7. DOI: http://dx.doi.org/10.5334/
jors.am

40. Girotto, I, Kohlmeyer, A, Grellscheid, D and Brown,
S T 2013 Advanced Techniques for Scientific Program-
ming and Collaborative Development of Open Source
Software Packages at the ICTP. figshare, 796439. DOI:
http://dx.doi.org/10.6084/m9.figshare.796439

41. Prlić, A and Procter, J B 2012 Ten Simple Rules for
the Open Development of Scientific Software. PLOS
Computational Biology, 8(12). DOI: http://dx.doi.
org/10.1371/journal.pcbi.1002802

42. Lenhardt, C 2013 Summary of Papers on Science
Software Sustainability Models for WSSSPE Panel II.
figshare, 853817. DOI: http://dx.doi.org/10.6084/
m9.figshare.853817

43. Calero, C, Moraga, M A and Bertoa, M F 2013
Towards a Software Product Sustainability Model.
arXiv, 1309.1640. Available at: http://arxiv.org/
abs/1309.1640

44. Venters, C C, Lau, L, Griffiths, M K, Holmes, V,
Ward, R R, Jay, C, Dibsdale, C E and Xu, J 2014 The
Blind Men and the Elephant: Towards an Empirical
Evaluation Framework for Software Sustainability.
Journal of Open Research Software, 2(1): e8. DOI:
http://dx.doi.org/10.5334/jors.ao

45. Pierce, M, Marru, S and Mattmann, C 2013 Sus-
tainable Cyberinfrastructure Software Through Open
Governance. figshare, 790761. DOI: http://dx.doi.
org/10.6084/m9.figshare.790761

46. Katz, D S and Proctor, D 2014 A Framework for Dis-
cussing e-Research Infrastructure Sustainability. Jour-
nal of Open Research Software, 2(1): e13. DOI: http://
dx.doi.org/10.5334/jors.av

47. Lenhardt, W C, Ahalt, S, Blanton, B, Christopher-
son, L and Idaszak, R 2014 Data Management Lifecy-
cle and Software Lifecycle Management in the Context
of Conducting Science. Journal of Open Research Soft-
ware, 2(1): e15. DOI: http://dx.doi.org/10.5334/jors.ax

48. Weber, N, Thomer, A and Twidale, M 2013 Niche
Modeling: Ecological Metaphors for Sustainable Soft-
ware in Science. figshare, 791564. DOI: http://dx.doi.
org/10.6084/m9.figshare.791564

49. Katz, D S 2014 Transitive Credit as a Means to Address
Social and Technological Concerns Stemming from
Citation and Attribution of Digital Products. Journal
of Open Research Software, 2(1): e20. DOI: http://
dx.doi.org/10.5334/jors.be

50. Priem, J and Piwowar H 2013 Toward a compre-
hensive impact report for every software project.
figshare: 790651. DOI: http://dx.doi.org/10.6084/
m9.figshare.790651

51. Knepley, M G, Brown, J, McInnes, L C and Smith, B
2013 Accurately Citing Software and Algorithms Used
in Publications. figshare, 785731. DOI: http://dx.doi.
org/10.6084/m9.figshare.785731

52. Howison, J and Herbsleb, J D 2013 Incentives
and integration in scientific software production.
In: Proceedings of the ACM Conference on Com-
puter Supported Cooperative Work. New York,
NY, USA: ACM. pp. 459–470. DOI: http://dx.doi.
org/10.1145/2441776.2441828

53. Howison, J and Herbsleb, J D 2011 Scientific soft-
ware production: incentives and collaboration. In:
Proceedings of the ACM Conference on Computer
Supported Cooperative Work. CSCW ’11. Hangzhou,
China: ACM. pp. 513–522. DOI: http://dx.doi.
org/10.1145/1958824.1958904

54. Bietz, M J, Baumer, E P and Lee, C P 2010 Synergiz-
ing in Cyberinfrastructure Development. Computer
Supported Cooperative Work, 19(3–4): 245–281. DOI:
http://dx.doi.org/10.1007/s10606-010-9114-y

55. Chue Hong, N, Hole, B and Moore, S 2013 Software
Papers: improving the reusability and sustainability
of scientific software. figshare, 795303. DOI: http://
dx.doi.org/10.6084/m9.figshare.795303

http://dx.doi.org/10.5334/jors.at
http://arxiv.org/abs/1309.1783
http://arxiv.org/abs/1309.1783
http://dx.doi.org/10.6084/m9.figshare.791567
http://dx.doi.org/10.6084/m9.figshare.791567
http://dx.doi.org/10.6084/m9.figshare.790723
http://dx.doi.org/10.6084/m9.figshare.790739
http://dx.doi.org/10.6084/m9.figshare.790739
http://dx.doi.org/10.6084/m9.figshare.791565
http://dx.doi.org/10.6084/m9.figshare.791565
http://opac.inria.fr/record=b1134063
http://doi.acm.org/10.1145/2484762.2484782
http://doi.acm.org/10.1145/2484762.2484782
http://dx.doi.org/10.6084/m9.figshare.790757
http://dx.doi.org/10.6084/m9.figshare.790757
http://dx.doi.org/10.5334/jors.bc
http://dx.doi.org/10.5334/jors.am
http://dx.doi.org/10.6084/m9.figshare.796439
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://dx.doi.org/10.6084/m9.figshare.853817
http://dx.doi.org/10.6084/m9.figshare.853817
http://arxiv.org/abs/1309.1640
http://arxiv.org/abs/1309.1640
http://dx.doi.org/10.5334/jors.ao
http://dx.doi.org/10.6084/m9.figshare.790761
http://dx.doi.org/10.6084/m9.figshare.790761
http://dx.doi.org/10.5334/jors.av
http://dx.doi.org/10.5334/jors.ax
http://dx.doi.org/10.6084/m9.figshare.791564
http://dx.doi.org/10.6084/m9.figshare.791564
http://dx.doi.org/10.5334/jors.be
http://dx.doi.org/10.6084/m9.figshare.790651
http://dx.doi.org/10.6084/m9.figshare.790651
http://dx.doi.org/10.6084/m9.figshare.785731
http://dx.doi.org/10.6084/m9.figshare.785731
http://dx.doi.org/10.1145/2441776.2441828
http://dx.doi.org/10.1145/2441776.2441828
http://dx.doi.org/10.1145/1958824.1958904
http://dx.doi.org/10.1145/1958824.1958904
http://dx.doi.org/10.1007/s10606-010-9114-y
http://dx.doi.org/10.6084/m9.figshare.795303
http://dx.doi.org/10.6084/m9.figshare.795303

Katz et al: Summary of the First Workshop on Sustainable Software for ScienceArt. e6, page 20 of 21

56. Krintz, C, Jayathilaka, H, Dimopoulos, S, Pucher,
A and Wolski, R 2013 Developing Systems for API
Governance. figshare, 790746. DOI: http://dx.doi.
org/10.6084/m9.figshare.790746

57. Heiland, R, Thomas, B, Welch, V and Jackson, C
2013 Toward a Research Software Security Maturity
Model. arXiv, 1309.1677. Available at: http://arxiv.
org/abs/1309.1677

58. Blanton, B and Lenhardt, C 2014 A Scientist's Per-
spective on Sustainable Scientific Software. Journal of
Open Research Software, 2(1): e17. DOI: http://dx.doi.
org/10.5334/jors.ba

59. Huang, D and Lapp, H 2013 Software Engineer-
ing as Instrumentation for the Long Tail of Scien-
tific Software. figshare, 791560. DOI: http://dx.doi.
org/10.6084/m9.figshare.791560

60. Goff, S A, Vaughn, M, McKay, S, Lyons, E, Staple-
ton, A E, Gessler, D, et al 2011 The iPlant Collabora-
tive: Cyberinfrastructure for Plant Biology. Frontiers
in Plant Science, 2(July): 1–16. DOI: http://dx.doi.
org/10.3389/fpls.2011.00034

61. Goecks, J, Nekrutenko, A, Taylor, J and Galaxy
Team 2010 Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome
Biology, 11(8): R86. DOI: http://dx.doi.org/10.1186/
gb-2010-11-8-r86

62. Caporaso, J G, Kuczynski, J, Stombaugh, J, Bit-
tinger, K, Bushman, F D, Costello, E K, et al 2010
QIIME allows analysis of high-throughput commu-
nity sequencing data. Nature Methods, 7(5): 335–336.
DOI: http://dx.doi.org/10.1038/nmeth.f.303

63. Boettiger, C, Ram, K, Chamberlain, S and Hart, E
rOpenSci - open source tools for open science [Cited
06 April 2014]. Available at: http://ropensci.org/

64. Wilson, G 2006 Software Carpentry: Getting Scien-
tists to Write Better Code by Making Them More Pro-
ductive. Computing in Science & Engineering, 8(6): 66.
DOI: http://dx.doi.org/10.1109/mcse.2006.122

65. Vay, J L, Geddes, C G R, Koniges, A, Friedman, A,
Grote, D P and Bruhwiler, D 2013 White Paper on
DOE-HEP Accelerator Modeling Science Activities.
figshare, 793816. DOI: http://dx.doi.org/10.6084/
m9.figshare.793816

66. Maheshwari, K, Kelly, D, Krieder, S J, Wozniak, J
M, Katz, D S, Zhi-Gang, M, et al 2013 Reusability in
Science: From Initial User Engagement to Dissemina-
tion of Results. arXiv: 1309.1813. Available at: http://
arxiv.org/abs/1309.1813

67. Hart, E, Boettiger, C, Ram, K and Chamberlain, S
2013 rOpenSci - a collaborative effort to develop
R-based tools for facilitating Open Science. fig-
share, 791569. DOI: http://dx.doi.org/10.6084/
m9.figshare.791569

68. Pierce, M, Marru, S, Demeler, B, Majumdar, A and
Miller, M 2013 Science Gateway Operational Sustain-
ability: Adopting a Platform-as-a-Service Approach.
figshare, 790760. DOI: http://dx.doi.org/10.6084/
m9.figshare.790760

69. Zentner, L, Zentner, M, Farnsworth, V, McLennan,
M, Madhavan, K and Klimeck, G 2014 nanoHUB.
org: Experiences and Challenges in Software Sustain-
ability for a Large Scientific Community. Journal of
Open Research Software, 2(1): e19. DOI: http://dx.doi.
org/10.5334/jors.bd

70. Löffler, F, Brandt, S R, Allen, G and Schnetter, E
2014 Cactus: Issues for Sustainable Simulation Soft-
ware. Journal of Open Research Software, 2(1): e12.
DOI: http://dx.doi.org/10.5334/jors.au

71. Wilkins-Diehr, N, Lawrence, K, Hayden, L, Pierce,
M, Marru, S, McLennan, M, et al 2013 Science
Gateways and the Importance of Sustainability. fig-
share: 790764. DOI: http://dx.doi.org/10.6084/
m9.figshare.790764

72. Millington, R 2012 Buzzing Communities: How to
Build Bigger, Better, and More Active Online Communi-
ties. FeverBee.

73. Deelman, E, Livny, M and Howison, J Examining
the Scientific Software Ecosystem [Cited 06 April
2014]. Available at: https://sites.google.com/site/
scientificsoftwaremetrics/

74. Prlić, A and Procter, J B 2012 Ten simple rules for the
open development of scientific software. PLoS Com-
putational Biology, 8(12): e1002802+. DOI: http://
dx.doi.org/10.1371/journal.pcbi.1002802

75. Bangerth, W and Heister, T 2013 What makes com-
putational open source software libraries successful?
Computational Science & Discovery, 6(1): 015010.
Available at: http://stacks.iop.org/1749-4699/6/
i=1/a=015010

76. Bacon, J 2009 The Art of Community. Building the
New Age of Participation.

77. Trapani, G 2011 Your Community is Your Best Fea-
ture. Available at: http://smarterware.org/7819/
my-codeconf-talk-your-community-is-your-best-fea-
ture

78. Fogel, K 2005 Producing Open Source Software:
How to Run a Successful Free Software Project.
O’Reilly Media, Inc. Available at: http://www.ama-
zon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0596007590

79. Allsopp, J 2012 The Proof of the Pudding. Avail-
able at: http://www.webdirections.org/blog/the-
proof-of-the-pudding/

80. Foster, I, Vasiliadis, V and Tuecke, S 2013 Soft-
ware as a Service as a path to software sustainability.
figshare, 791604. DOI: http://dx.doi.org/10.6084/
m9.figshare.791604

81. Elster, A C 2013 Software for Science: Some Personal
Reflections. arXiv, 1309.2357. Available at: http://
arxiv.org/abs/1309.2357

82. Gardler, R Software Sustainability Maturity Model
[Cited 06 February 2014]. Available at: http://oss-
watch.ac.uk/resources/ssmm

83. Ferenbaugh, C R 2013 Experiments in Sustain-
able Software Practices for Future Architectures.
arXiv, 1309.1428. Available at: http://arxiv.org/abs/
1309.1428

http://dx.doi.org/10.6084/m9.figshare.790746
http://dx.doi.org/10.6084/m9.figshare.790746
http://arxiv.org/abs/1309.1677
http://arxiv.org/abs/1309.1677
http://dx.doi.org/10.5334/jors.ba
http://dx.doi.org/10.6084/m9.figshare.791560
http://dx.doi.org/10.6084/m9.figshare.791560
http://dx.doi.org/10.3389/fpls.2011.00034
http://dx.doi.org/10.3389/fpls.2011.00034
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1038/nmeth.f.303
http://ropensci.org/
http://dx.doi.org/10.1109/mcse.2006.122
http://dx.doi.org/10.6084/m9.figshare.793816
http://dx.doi.org/10.6084/m9.figshare.793816
http://arxiv.org/abs/1309.1813
http://arxiv.org/abs/1309.1813
http://dx.doi.org/10.6084/m9.figshare.791569
http://dx.doi.org/10.6084/m9.figshare.791569
http://dx.doi.org/10.6084/m9.figshare.790760
http://dx.doi.org/10.6084/m9.figshare.790760
http://nanoHUB.org
http://nanoHUB.org
http://dx.doi.org/10.5334/jors.bd
http://dx.doi.org/10.5334/jors.au
http://dx.doi.org/10.6084/m9.figshare.790764
http://dx.doi.org/10.6084/m9.figshare.790764
https://sites.google.com/site/scientificsoftwaremetrics/
https://sites.google.com/site/scientificsoftwaremetrics/
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://stacks.iop.org/1749-4699/6/i=1/a=015010
http://stacks.iop.org/1749-4699/6/i=1/a=015010
http://smarterware.org/7819/my-codeconf-talk-your-community-is-your-best-feature
http://smarterware.org/7819/my-codeconf-talk-your-community-is-your-best-feature
http://smarterware.org/7819/my-codeconf-talk-your-community-is-your-best-feature
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0596007590
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0596007590
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0596007590
http://www.webdirections.org/blog/the-proof-of-the-pudding/
http://www.webdirections.org/blog/the-proof-of-the-pudding/
http://dx.doi.org/10.6084/m9.figshare.791604
http://dx.doi.org/10.6084/m9.figshare.791604
http://arxiv.org/abs/1309.2357
http://arxiv.org/abs/1309.2357
http://oss-watch.ac.uk/resources/ssmm
http://oss-watch.ac.uk/resources/ssmm
http://arxiv.org/abs/1309.1428
http://arxiv.org/abs/1309.1428

Katz et al: Summary of the First Workshop on Sustainable Software for Science Art. e6, page 21 of 21

84. Carver, J C and Thiruvathukal, G K 2013 Software
Engineering Need not be Difficult. figshare, 830442.
DOI: http://dx.doi.org/10.6084/m9.figshare.
830442

85. Gordon and Betty Moore Foundation Data Sci-
ence Environments [Cited 21 April 2014]. Available
at: http://www.moore.org/programs/science/data-
driven-discovery/data-science-environments

86. Thaney, K Code as a research object: a new project
[Cited 21 April 2014]. Available at: http://mozil-
lascience.org/code-as-a-research-object-a-new-
project/

87. Miller, M C, Diachin, L, Balay, S, McInnes, L C,
and Smith, B 2013 Package Management Practices
Essential for Interoperability: Lessons Learned and
Strategies Developed for FASTMath. figshare, 789055.
DOI: http://dx.doi.org/10.6084/m9.figshare.789055
[Last accessed 03 April 2014].

88. Stephan, E G, Elsethagen, T O, Kleese van Dam, K,
and Riihimaki, L 2013 What Comes First, the OWL
or the Bean? figshare, 790738. DOI: http://dx.doi.
org/10.6084/m9.figshare.790738

89. Gaston, D R, Peterson, J W, Permann, C J, Andrs,
D, Slaughter, A E and Miller, J M 2014 Continuous
Integration for Concurrent Computational Frame-
work and Application Development. Journal of Open
Research Software, 2(1): e10. DOI: http://dx.doi.org/
10.5334/jors.as

90. Choi, S-C T 2014 MINRES-QLP Pack and Reliable
Reproducible Research via Supportable Scientific
Software. Journal of Open Research Software, 2(1):
e22. DOI: http://dx.doi.org/10.5334/jors.bb

91. Heien, E M, Miller, T L, Gietzel, B and Kellogg, L
H 2013 Experiences with Automated Build and Test
for Geodynamics Simulation Codes. arXiv, 1309.1199.
Available at: http://arxiv.org/abs/1309.1199

92. Casanova, H, Giersch, A, Legrand, A, Quinson,
M and Suter, F 2013 SimGrid: a Sustained Effort for
the Versatile Simulation of Large Scale Distributed

Systems. arXiv, 1309.1630. Available at: http://arxiv.
org/abs/1309.1630

93. Cohen, J, Cantwell, C, Chue Hong, N, Moxey, D,
Illingworth, M, Turner A, et al 2014 Simplifying the
Development, Use and Sustainability of HPC Soft-
ware. Journal of Open Research Software, 2(1): e16.
DOI: http://dx.doi.org/10.5334/jors.az

94. Slawinski, J and Sunderam, V 2013 Towards Semi-
Automatic Deployment of Scientific and Engineering
Applications. figshare, 791570. DOI: http://dx.doi.
org/10.6084/m9.figshare.791570

95. Dubey, A, Brandt, S R, Brower, R, Giles, M, Hovland,
P, Lamb, D Q, et al 2014 Software Abstractions and
Methodologies for HPC Simulation Codes on Future
Architectures. Journal of Open Research Software, 2(1):
e14. DOI: http://dx.doi.org/10.5334/jors.aw

96. Stewart, C A, Wernert, J, Wernert, E A, Barnett,
W K and Welch, V 2013 Initial Findings from a Study
of Best Practices and Models for Cyberinfrastructure
Software Sustainability. arXiv, 1309.1817. Available at:
http://arxiv.org/abs/1309.1817

97. Brown, J, Knepley, M and Smith, B 2013 Run-
time extensibility: anything less is unsustainable.
figshare, 791571. DOI: http://dx.doi.org/10.6084/
m9.figshare.791571

98. Swenson, S, Simmhan, Y, Prasanna, V, Parashar,
M, Riedy, J, Bader, D, et al 2013 Sustainable Software
Development for Next-Gen Sequencing (NGS) Bioin-
formatics on Emerging Platforms. arXiv, 1309.1828.
Available at: http://arxiv.org/abs/1309.1828

99. Stodden, V and Miguez, S 2014 Best Practices for
Computational Science: Software Infrastructure
and Environments for Reproducible and Extensible
Research. Journal of Open Research Software, 2(1): e21.
DOI: http://dx.doi.org/10.5334/jors.ay

100. Moore, R W, Rajasekar, A and Xu, H 2014 Exten-
sible Generic Data Management Software. Journal of
Open Research Software, 2(1): e9. DOI: http://dx.doi.
org/10.5334/jors.ap

How to cite this article: Katz, D S, Choi, S-C T, Lapp, H, Maheshwari, K, Löffler, F, Turk, M, Hanwell, M D, Wilkins-Diehr, N, Hetherington,
J, Howison, J, Swenson, S, Allen, G D, Elster, A C, Berriman, B and Venters, C 2014 Summary of the First Workshop on Sustainable
Software for Science: Practice and Experiences (WSSSPE1). Journal of Open Research Software, 2(1): e6, pp. 1-21, DOI: http://
dx.doi.org/10.5334/jors.an

Published: 9 July 2014

Copyright: © 2014 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

 OPEN ACCESS Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

http://dx.doi.org/10.6084/m9.figshare.830442
http://dx.doi.org/10.6084/m9.figshare.830442
http://www.moore.org/programs/science/data-driven-discovery/data-science-environments
http://www.moore.org/programs/science/data-driven-discovery/data-science-environments
http://mozillascience.org/code-as-a-research-object-a-new-project/
http://mozillascience.org/code-as-a-research-object-a-new-project/
http://mozillascience.org/code-as-a-research-object-a-new-project/
http://dx.doi.org/10.6084/m9.figshare.789055
http://dx.doi.org/10.6084/m9.figshare.790738
http://dx.doi.org/10.6084/m9.figshare.790738
http://dx.doi.org/10.5334/jors.as
http://dx.doi.org/10.5334/jors.bb
http://arxiv.org/abs/1309.1199
http://arxiv.org/abs/1309.1630
http://arxiv.org/abs/1309.1630
http://dx.doi.org/10.5334/jors.az
http://dx.doi.org/10.6084/m9.figshare.791570
http://dx.doi.org/10.6084/m9.figshare.791570
http://dx.doi.org/10.5334/jors.aw
http://arxiv.org/abs/1309.1817
http://dx.doi.org/10.6084/m9.figshare.791571
http://dx.doi.org/10.6084/m9.figshare.791571
http://arxiv.org/abs/1309.1828
http://dx.doi.org/10.5334/jors.ay
http://dx.doi.org/10.5334/jors.ap
http://dx.doi.org/10.5334/jors.an
http://dx.doi.org/10.5334/jors.an
http://creativecommons.org/licenses/by/3.0/

