Search My Blog
 About Sou-Cheng

Dr. Sou-Cheng T. Choi joined Kamakura as Chief Data Scientist on February 1., 2020. Dr. Choi previously served as the Principal Data Scientist and Lead Researcher in Machine Learning for the automotive and life innovation groups at Allstate Corporation, where she developed real-time risk models using advanced machine learning technology.

 Contact Us
Kamakura Corporation
2222 Kalakaua Avenue

Suite 1400
Honolulu HI 96815

Phone: 808.791.9888
Fax: 808.791.9898
info@kamakuraco.com

Americas, Canada
James McKeon
Director of USA Business Solutions
Phone: 215.932.0312

Andrew Zippan
Director, North America (Canada)
Phone: 647.405.0895
 
Asia, Pacific
Clement Ooi
President, Asia Pacific Operations
Phone: +65.6818.6336

Australia, New Zealand
Andrew Cowton
Managing Director
Phone: +61.3.9563.6082

Europe, Middle East, Africa
Jim Moloney
Managing Director, EMEA
Phone: +49.17.33.430.184

Tokyo, Japan
3-6-7 Kita-Aoyama, Level 11
Minato-ku, Tokyo, 107-0061 Japan
Toshio Murate
Phone: +03.5778.7807

Visit Us
Linked In Twitter Seeking Alpha

Careers at Kamakura
Technical Business Consultant – ASPAC
Asia Pacific Region
Business Consultant – ASPAC
Asia Pacific Region

Consultant
Europe

Kamakura Risk Manager Data Expert
Europe, North America, Asia & Australia 

 

 Archive
  

Kamakura Blog

  

Automatic and adaptive approximation, optimization, or integration of functions in a cone with guarantee of accuracy is a relatively new paradigm. Our purpose is to create an open-source MATLAB package, Guaranteed Automatic Integration Library (GAIL), following the philosophy of reproducible research championed by Claerbout and Donoho, and sustainable practices of robust scientific software development. For our conviction that true scholarship in computational sciences are characterized by reliable reproducibility, we employ the best practices in mathematical research and software engineering known to us and available in MATLAB.

Read More »

This technical report records and discusses the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2). The report includes a description of the alternative, experimental submission and review process, two workshop keynote presentations, a series of lightning talks, a discussion on sustainability, and five discussions from the topic areas of exploring sustainability; software development experiences; credit & incentives; reproducibility & reuse & sharing; and code testing & code review. For each topic, the report includes a list of tangible actions that were proposed and that would lead to potential change. The workshop recognized that reliance on scientific software is pervasive in all areas of world-leading research today.

Read More »

Abstract: We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite preconditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP.

Read More »

Challenges related to development, deployment, and maintenance of reusable software for science are becoming a growing concern. Many scientists’ researchincreasingly depends on the quality and availability of software upon which their works are built. To highlight some of these issues and share experiences,the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1) was held in November 2013 in conjunction with the SC13Conference. The workshop featured keynote presentations and a large number (54) of solicited extended abstracts that were grouped into three themes andpresented via panels. A set of collaborative notes of the presentations and discussion was taken during the workshop.10

Read More »

CG, SYMMLQ, and MINRES are Krylov subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ's solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems. MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition n

Read More »

«previous next»