Default Probability Correlations
Kamakura Public Firm Models
Version 5.0

— SEPTEMBER 2011 —

© 2011 Kamakura Corporation. All rights reserved.
Contents

I. Introduction
II. KRIS Default Probability Correlations
III. KRIS Default Correlations
IV. KRIS Public Firm Models: A Summary
V. The Jarrow Chava Model
VI. Merton Structural Model
VII. Jarrow Merton Hybrid Model
VIII. About Kamakura Corporation
I. Introduction

Kamakura Risk Information Services public firm default probabilities were launched in November 2002, followed by the KRIS Sovereign Default Service in 2008 and the KRIS Non-Public Firm Model 2011. The KRIS service provides estimates of the full term structure of default probabilities of an individual public firm based upon current public information about the firm, its economic environment, firm-specific financial ratios and equity market inputs. Maturities are available 1 month, 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years, and 10 years.

KRIS default probabilities are utilized by major corporations, central banks, and financial institutions in Europe, Asia and the Americas for two major purposes: monitoring the risk of single counterparties and monitoring the risk of large portfolios of counterparties whose default risk is highly likely to be correlated. The KRIS default probability service contains the pair-wise correlation of every pair of companies covered in the KRIS service. In the next section, we discuss these correlations and their use in modern portfolio management.

II. KRIS Default Probability Correlations

Many market participants talk about three different definitions of default “correlation” as if they were interchangeable:

Asset correlation: the correlation in the returns on company assets for two firms, for example Lehman Brothers and Bear Stearns, in a Merton or copula modeling context.

Correlation in the event of default: the correlation between a variable that is 0 in a non-defaulting period and 1 in the defaulting period. Such a variable would be 0 for every observation prior to the defaulting period and one in the period in which the firm defaults. For two firms that have not gone bankrupt, these variables contain nothing but zeros and this definition of correlation is problematic.

Correlation in the default probabilities themselves: the simple correlation in the time series of default probabilities for two firms, such as Lehman Brothers and Bear Stearns.

Each of these correlations could potentially be useful, depending on the nature of the portfolio simulation that the user chooses. If the user feels that default probabilities are constant, a common assumption in the copula approach, then one would use the first definition of correlation. If one were modeling default probabilities that are random and rise and fall over the business cycle, then one would use the third definition. Robert Jarrow and Donald R. van Deventer showed that these alternative definitions of default correlation are mathematically linked (see “Estimating Default Correlations Using a Reduced Form Model,” Risk Magazine, January, 2005). The KRIS default probability service includes default correlations to aid analysts who are modeling enterprise credit risk either in the Kamakura Risk Manager system or some other system.
III. KRIS Default Correlations

The KRIS default probability service provides correlations in the default probabilities of any pair of public firms for each of the four default models described below, each of which has 9 different maturities of default probabilities available. All together, more than 4.85 million pair-wise default probability correlations are available in KRIS at its 2011 level of coverage: 30,500 public firms in 37 countries.

Default correlations have much in common with the beta calculation commonly used in the capital asset pricing model and extensions of that model for equity portfolio management. In the equity market, betas are commonly estimated using 60 months of historical data. Using this convention as a precedent, Kamakura measures default probability correlations incorporating 60 months of historical data for each pair of companies. Kamakura is pleased to include other correlation definitions at the request of a serious user. Jarrow and van Deventer (2005) show how to convert this correlation figure to alternative definitions of correlation described above.

The KRIS default probability correlations are essential to ensuring accurate simulation of portfolio credit risk, whether the portfolio is a traditional bank loan portfolio or a collateralized debt obligation. It is important to know, for example, that Citigroup and Ford have a default probability correlation in excess of 56% in addition to the obvious 68% correlation in the default probabilities of Ford and General Motors. Analysts who simulate portfolio credit risk without taking advantage of these insights run the risk of seriously underestimating total credit risk, the same error that led to the failure of so many firms in the 2007–2009 crisis.

The remainder of this brochure summarizes the main types of default models available under the KRIS default probability service.

IV. KRIS Public Firm Models: A Summary

Kamakura’s Public Firm Models currently offer four different quantitative approaches to modeling default probabilities: two versions of the Jarrow Chava Model (KDP-jc), the Merton Structural Model (KDP-ms), and the Jarrow Merton Hybrid Model (KDP-jm). Both the fourth generation (version 4.1, released in January 2006) and the fifth generation (version 5.0, released September 2010) of the Jarrow-Chava models are available on the web site at the request of the KRIS client base. All approaches incorporate information on market prices of firm equity and interest rates so that current market expectations are fully reflected in the default probability estimates. The availability of multiple Public Firm Models provides subscribers with theoretically sound alternative views on the likelihood a particular firm will default.
V. The Jarrow Chava Model

The Jarrow Chava Model is a statistical hazard model that relates the probability of firm default to several explanatory variables. The explanatory variables include firm financial ratios, other firm attributes, industry classification, interest rates and information about firm and market equity price levels and behavior. In this model, firm default can occur randomly at any time with an intensity determined by the explanatory variables. Originally developed by Kamakura’s Director of Research, Robert Jarrow, the Jarrow Chava Model provides an objective, statistically reliable method of predicting potential firm defaults. The Federal Deposit Insurance Corporation of the United States announced in December 2003 that it was adopting the methodology incorporated in the Jarrow Chava Model for its Loss Distribution Model for the bank and savings and loan insurance funds. Both the fourth and fifth generation Jarrow-Chava models incorporate multiple equations for forecasting default at different forward time intervals, conditional on survival to that point in time. These equations share the same inputs but they have different weightings depending on the time horizon. The current and forward conditional default probabilities are combined to derive the full default term structure out to ten years.

VI. Merton Structural Model

The Merton Structural Model uses option pricing methods to relate the probability of firm default to its financial structure and information about the firm’s market price of equity. The explanatory variables include a measure of the firm’s outstanding debt, its market valuation, and information about firm and market equity price behavior. In this model, firm default occurs when the market value of the firm’s assets decline below a threshold related to the firm’s outstanding debt. Robert Merton, winner of the Nobel Prize in Economic Sciences in 1997, originally developed this model.

VII. Jarrow Merton Hybrid Model

The Jarrow Merton Hybrid Model is a statistical hazard model that relates the probability of firm default to the same explanatory variables as the Jarrow Chava Model, but it also incorporates the default probability of the Merton Structural Model as an additional explanatory variable. In this model, firm default can occur randomly at any time with an intensity determined by the explanatory variables. Kamakura offers this Model to combine the default prediction capabilities of the associated models. Forward default probabilities and the full term structure of default are derived in the same fashion as for the Jarrow-Chava models.
VIII. About Kamakura Corporation

Founded in 1990, Honolulu-based Kamakura Corporation is a leading provider of risk management information, processing and software. Kamakura has taken Credit Technology Innovation Awards from Credit Magazine each year since 2008. In 2010, Kamakura was the only vendor to win 2 innovation awards, including one with distribution partner Thomson Reuters. Kamakura, along with a distributor of KRM, was ranked number one in asset and liability management analysis and liquidity risk analysis in the RISK Technology Rankings in 2009. Kamakura Risk Manager, first sold commercially in 1993 and now in version 7.3, was also named in the top five for market risk assessment, Basel II capital calculations, and for “risk dashboard.” Kamakura was also ranked in the RISK Technology Rankings 2008 as one of the world’s top 3 risk information providers for its KRIS default probability service. The KRIS public firm default service was launched in 2002, the KRIS sovereign default service, the world’s first, was launched in 2008, and the KRIS non-public firm default service was offered beginning in 2011. KRIS default probabilities are displayed for 4000 corporates and sovereigns via the Reuters 3000 Xtra service and the Thomson Reuters Eikon service. Kamakura has served more than 200 clients ranging in size from $1.5 billion in assets to $1.6 trillion in assets. Kamakura’s risk management products are currently used in 34 countries, including the United States, Canada, Germany, the Netherlands, France, Austria, Switzerland, the United Kingdom, Russia, the Ukraine, Eastern Europe, the Middle East, Africa, South America, Australia, Japan, China, Korea and many other countries in Asia.

Kamakura has world-wide distribution alliances with Sumisho Computer Systems (http://www.scs.co.jp/english/), Unisys (www.unisys.com), and Zylog Systems (www.zsl.com), making Kamakura products available in almost every major city around the globe.

Kamakura Corporation

2222 Kalakaua Avenue, Suite 1400
Honolulu, Hawaii 96815
United States of America

Telephone: 1-808-791-9888
Facsimile: 1-808-791-9898

Information: info@kamakuraco.com

www.kamakuraco.com